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ABSTRACT 

 

 Brain is the most complex organ in the human body. The brain 

creates a range of electric potential for every action done by the human. For 

brain diagnosis the Electroenchaphalogram (EEG) is the signal of interest. 

But EEG which should read the scalp electrical activity of the human body 

also reads its physiological and extra physiological activities which are 

collectively called as „artifacts‟. These artifacts which are the interference to 

EEG should be eliminated for proper diagnosis. In this thesis, four methods 

are developed for the efficient removal of artifacts. 

 The first method describes the basic principle behind the 

independent component analysis technique. The contrast functions for 

different routes to independence are clearly depicted. Independent Component 

Analysis is a technique to separate signals from a mixure. ICA method 

discusses the functions that measure the non-Gaussianity of any dataset which 

leads to the gradient algorithm to maximize the non-gaussianity of datasets 

which in turn is the basis of Fast-ICA algorithm. It explains the higher order 

cumulants followed by a discussion of cumulant tensors. The role of cumulant 

tensors in the ICA algorithm Joint approximate Diagnolization of Eigen 

matrices (JADE) is discussed. The proposed improved JADE algorithm uses 
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significant eigen pairs of the cumulant tensor F (M) to find out the estimated 

values of independent components. The tensor eigen value decomposition is 

considered as more of a preprocessing step. The improved JADE gives better 

results among the four ICA algorithms in terms of their convergence speed, 

entropy and signal to noise ratio. 

 The second method proposes principle behind the neuro fuzzy 

system clearly. In this work the neuro-fuzzy in fuzzy modeling research field 

is divided into two areas: linguistic fuzzy modeling that is focused on 

interpretability, mainly the Mamdanimodel; and precise fuzzy modeling that 

is focused on accuracy, mainly the Takagi-Sugeno-Kang (TSK) model. It 

starts with the development of a “fuzzy neuron” based on the understanding of 

biological neuronal morphologies, followed by learning mechanisms .Using 

neuro fuzzy filter the artifacts are extracted from EEG signal. Compare to 

ICA Algorithms it provides better results in terms of Signal to Noise Ratio 

(SNR). 

 The third method presents the principle of Haar transform. This 

transform cross-multiplies a function against the Haar wavelet with various 

shifts and stretches, like the Fourier transform cross-multiplies a function 

against a sine wave with two phases and many stretches. The Haar transform 

can be thought of as a sampling process in which rows of the transform for 

noise removal. It provides shortest path and time consumption. In this, work 
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the Haar wavelet of higher orders is used to decompose the recorded EEG 

signal to detect the exact moment when the state of the eyes changes and on 

subsequent section to eye-blinks and movements of the eyeballs as well. 

Compare to Neuro fuzzy filter it provides better results in terms of SNR and 

Power Spectral Density (PSD). 

 The fourth method presents the details behind the multiwavelet 

transform. They are defined using several wavelets with several scaling 

functions. Multiwavelet has several advantages incomparison with scalar 

wavelet. The features such as compact support, orthogonally, symmetry, and 

higher order approximation are known to be important in signal processing.  

In this method thresholding technique is used for signal de-noising. 

Decomposing a signal using the wavelet transform, a set of wavelet 

coefficients that correlates to the high frequency sub bands. These high 

frequency sub bands consist of the details in the data set.  If these details are 

small enough, they might be omitted without substantially affecting the main 

features of the data set. The de-noising of EEG signal is carried out by using 

different combinations of threshold limit, thresholding function and window 

sizes.  Choice of threshold limit and thresholding function is a crucial step in 

the denoising procedure, as it should not remove the original signal 

coefficients leading to loss of critical information in the analyzed data. 
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 It can be seen that the Multiwavelet transform is more efficient in 

removal of artifacts than the other methods namely Improved JADE, Neuro 

fuzzy filter and Haar wavelet transform. The efficiency is measured in terms 

of SNR and Correlation factor. Hence Multiwavelet is considered as the most 

consistent and robust method for the removal of artifacts in EEG. 
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CHAPTER 1 

INTRODUCTION 

 

 The human brain, apart from being the Centre of human nervous 

system, plays an incredibly a  remarkable role in controlling all the physical 

and mental activities and considered as the most complex organ in human 

beings. The human brain has amazed and baffled many doctors and scientists 

that they devoted their entire lives in learning how the brain works. Though 

the recent advancements in science and medicine have provided a better 

understanding regarding the inner-working of the brain, mysteries regarding 

many of its simplest achievements are not yet unfolded. Indeed, the most 

powerful supercomputers are unable to compete with the computational 

power of the human brain due to its incalculable complexity. The powerful 

chess computer which owned the pride of defeating the world chess champion 

Garry Kasparov in 1997 was only capable of a mere 1/30th of the estimated 

power of the human brain. 

 The human brain is composed of nearly 100 billion neurons, thus 

forming an enormous network as shown in Figure 1.1. They are not only 

interconnected with each other but also capable of communicating with each 

other through their axons using small electric impulses in the order of µV. 
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Figure 1.1 Interconnected neurons 

 During each and every mental activity, variations in the electric 

potential of the active regions of the brain take place. These small electric 

variations, when summed over a region, gives a potential variation in the 

space, these variations are then decomposed in a  series of electric maps. 

Thus, any mental activity in the human brain can be studied as a sequential 

continuation of brain electrical states. 

 The recordings of the electrical activity of the brain provide 

knowledge regarding those dynamic functional states of the brain. They help 

to identify the mental tasks that may occur at the moment and help  even to 

recognize the mental activity that may occur later (Fakhreddine Karray et al 

2008). 

 Though human beings and all other mammals have  a similarity in 

the general structure of the brain, the human brain is over three times larger 

than the brain of a typical mammal with an equivalent body size. The cerebral 

cortex in the human brain which is a convoluted layer of the neural tissue  

covering the surface of the forebrain, occupies nearly 85% of the human 

brain, thus providing a major contribution for this expansion in size. Apart 
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from this, the expanded frontal lobes  associated with executive functions 

such as self-control, planning, reasoning and abstract thought and the portion 

of the brain devoted to vision  and the occipital lobe is also greatly enlarged 

in human beings. 

 The human brain continuously receives sensory information via the 

neurons, analyzes the data and then responds instantly. Thus, the human brain 

plays a significant role in regulating and monitoring the body‟s actions and 

reactions. Some of the major functions like breathing, heart rate and other 

autonomic processes  independent of conscious brain functions are controlled 

by the brainstem. The neocortex serves as the center of higher-order thinking, 

learning, and memory.  The body's balance, posture, and the coordination of 

movement are controlled by the cerebellum. The figure 1.2 shows the 

structure of human brain.  

 

   Figure 1.2 Structure of human brain 

 The human brain is placed in a well-protected structure formed by 

the skull and suspended in the cerebrospinal fluid. Though it is isolated from 

the bloodstream by the blood-brain barrier, the human brain is easily affected 

by many diseases and damages. Closed head injuries such as a blow to the 
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head or a stroke may prove fatal to the human brain. The human brain is 

immune sensitive to poisoning by a wide variety of chemicals that can act as 

neurotoxins (Jonathan et al 2008).The biological barriers protect the human 

brain from serious infections. Parkinson's disease, multiple sclerosis, and 

Alzheimer's disease are some of the degenerative disorders which are likely to 

affect the human brain. Though a number of psychiatric disorders such as 

schizophrenia and depression are thought to be associated with brain 

dysfunctions, the nature of such brain anomalies is not  yet well understood. 

1.1 ELECTROECNCHAPAHALOGRAM 

 A measurement of the continuous brain-wave patterns or electrical 

activity of the brain, as recorded with the placement of small metal discs 

called electrodes positioned in a standardized pattern on the scalp. The 

resulting tracing reflects the summation of the activity of millions of 

individual neurons. The voltage and frequency is interpreted and it is useful 

for assessing brain death, seizure activity, and for determining stages of sleep. 

1.1.1 The Evoluation of EEG 

 EEG is a brain wave imaging technique used to measure the 

spontaneous electrical activity of the brain over a short period of time via the 

metal electrodes placed on the scalp and the conductive media (Teplan 2002). 

EEG plays a vital role in detecting the abnormalities related to the electrical 

activities of the brain such as epilepsy, sleep disorders and brain tumours.  
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Figure 1.3 A Four Second Sample of EEG Data. 

 Figure 1.3 shows the four second sample of EEG data. 

Electrocardiogram is the measurement of EEG  by placing electrodes directly 

on the exposed cerebral cortex. The usage of depth probes in EEG 

measurement is known as Electrogram. Thus, electroencephalographic 

reading can be recognized as a complete non-invasive procedure that allows 

the repeated usage to patients, normal adults, and children with virtually no 

risk or limitation. 

 The electrical activity of the brain was first discovered by an 

English physician named Richard Caton in 1875 (Teplan 2002) from the 

exposed cerebral hemispheres of rabbits and monkeys. In order to amplify the 

electrical currents in the brain, he utilized an invention of Lord Kelvin who 

invented the famous absolute temperature theory. Caton observed that when 

light is introduced in an animal‟s eye, variations in the electrical activity of 

the brain occurred (Bickford 1987). He further observed that these changes 

occurred only in the side of the brain which is opposite to the stimulated eye. 
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 The EEG signals were first recorded on paper by Dr. Hans Berger 

who used his ordinary radio equipment to amplify the electrical activity of the 

brain so that the electrical signals can be recorded on a paper. Shown in 

Figure 1.4.  

 

Figure 1.4 First EEG recording by Hans Berger 

1.1.2 Electrode Placement 

 The EEG signals are measured along the skull by the use of 

electrodes. The “10-20 system” is an internationally recognized guide system 

for the placement of the electrodes on the human scalp (Teplan 2002). The 

relationship between the location of an electrode and the underlying cerebral 

cortex area is the basis for the 10-20 system. Figure 1.5(a) shows left side of 

head 10-20 system of electrode placement. The 10-20 system is derived from 

the fact that the distances between the adjacent electrodes are either 10% or 

20% from one of the four anatomical landmarks on the head. These four 

landmarks are comprised of two landmarks at the front (the nasion, or bridge 

of the nose) and back (the inion, or bump at the back of the head), and two 

landmarks on the right and left sides (the preauricular points, or depressions 

in front of the ears above the cheekbones).There are odd number of electrodes 

on the left and even number of electrodes on the right with a letter indicating 

indicating the anatomical area in this standard 10-20 system. The Frontal, 

Temporal, Central, Parietal and Occipital lobes of the brain are differentiated 

and identified by the letter. The electrodes on the midline are represented by 

the letter z. The hemisphere locations are identified by the numbers 1 to 8. 
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The electrode positions on the right hemisphere are identified by the even 

numbers and the electrode positions on the left hemisphere are identified by 

the odd numbers. Figure 1.5(b) shows the top of head 10-20 system of 

electrode placement. The electrodes are considered to be closer to the midline 

between the hemispheres when the number is small. 

 
(a) Left side of head  (b) Top of head 

Figure 1.5 The 10-20 System of Electrode Placement 

1.1.3 Brain wave classification 

 On the basis of the frequency ranges, the EEG waves are mostly 

classified into four major types of continuous sinusoidal waves. There is no 

exact frequency range for each type of EEG wave (Scott Makeig 1997). 

Figure 1.6 shows the brain wave samples with dominant frequencies. 

1.1.3.1 Delta 

 The Delta waves have frequency within the range 0-4Hz. These are 

the slowest waves having  the highest amplitude. These waves occur in adults 

during deep sleep  and in infants. It may occur focally with subcortical lesions 

and also in general distribution with diffuse lesions and certain 

encephalopathy. The occurrence of these waves in awake state indicates 

serious organic brain disease. 
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1.1.3.2 Theta 

 These waves have frequency between 4-8Hz width an amplitude 

larger than alpha waves seen in parietal and temporal regions in children. 

These waves are associated with drowsiness, childhood, adolescence and 

young adulthood. Hypertension can sometimes produce the same frequency 

of Theta waves. Which can be seen during hypnagogic such as trances, 

hypnosis, deep day dreams, lucid dreaming and light sleep and preconscious 

state just upon waking, and just before falling sleep. 

1.1.3.3 Alpha 

 Alpha waves have frequency ranges between 8-12Hz and are the 

most prominent component of EEG. Alpha waves occur when the eyes are 

closed while it attenuates with drowsiness and open eyes on both the sides in 

the posterior side and in the dominant side with higher amplitude. An alpha 

like normal variant is called as   (mu) rhythm which occurs in the motor 

cortex (cerebral scalp) and attenuates with the movement of the limbs or 

mental imaginary movement. 

1.1.3.4 Beta waves 

 Beta waves occur within the frequency range 13-30Hz and are 

characterized with low amplitude and varying frequencies. They occur 

symmetrically on both sides in the frontal area  during active, busy or anxious 

thinking and active concentration. The cerebral cortex remains in an excitable 

condition under the effects of various pathologies or drugs  due to which the 

beta waves get gradually enhanced and the area of beta waves is expanded 

(Maan Shaker 2005). 
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Figure 1.6 Brain Wave Samples with Dominant Frequencies 

1.2 EEG ARTIFACTS 

 The EEG signals are recorded along with the electrical activity 

generated by the other organs in the human body (physiological) and from 

external sources (extraphysiological). These electrical activities are nothing 

but artifacts which create a problem in EEG analysis (Ashish Raj et al  2012). 

Figure 1.7(a) shows the clean EEG .Some of the commonly identified EEG 

artifacts are: 

1.2.1 Physiological artifacts 

 The Physiological Artifacts are mostly classified into the following 

major types: 

1.2.1.1 Muscle artifacts 

 When the electrical activity in the muscles are higher than the 

electrical activity in the brain, the muscle artifacts occur and it is the most 

common type of EEG artifacts which is shown in  Figure 1.7(b). The muscle 

artifacts are easy to be recognized and are mostly characterized by shorter 

duration, different shape and higher frequency than the brain electrical 

activity. 
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1.2.1.2 Eye movement artifacts 

 The human eye also contributes to a major type of artifacts called 

as Eye Movement Artifact acting as an electric dipole whose positive pole lies  

at the cornea and the negative pole  at the retina. When the patient blinks his 

eyes, the eyeball rotates backward within the head known as Bell‟s 

phenomenon. This causes the poles to move in relation to the electrodes 

which produce a deflection in the EEG which is shown in  Figure1.7(c), eye 

blink artifacts is shown in Figure 1.7(d). 

1.2.1.3 ECG artifacts 

 The muscles in the heart which are used to pump blood inside the 

human body contribute to a particular type of artifacts called as ECG Artifact  

more common in people who have short and wide neck. The ECG artifacts 

can easily be recognized in background EEG but, when the patient‟s 

condition is abnormal, both EEG and ECG obscure the underlying cerebral 

activity. 

1.2.1.4 Pulse artifacts 

The human circulatory system produces another type of artifact called Pulse 

Artifact when the electrodes are placed close to the pulsating blood vessels. 

Figure 1.7(e) shows pulse artifacts. 

1.2.1.5 Respiration artifacts 

 The artifacts produced by the human respiratory system are called 

as Respiratory artifacts and are of two types. Those which occur during 

inhalation and exhalation are slow or sharp waves but those that occur during 

the body movement related to respiration are slow rhythmic waves. These 

rhythmic artifacts mostly intervene during the monitoring of abnormal EEG 

activity. 
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1.2.2 Extraphysiological Artifact 

 The extraphysiological artifacts are commonly classified into the 

following types. 

1.2.2.1 AC artifacts 

 The main power in the recording equipment or medical equipment 

or the surrounding equipment such as lamps contributes to an artifact called 

AC artifacts which are shown in Figure 1.7(f). 

1.2.2.2 Others 

 The movement of other people around the patient, gravity fed 

intravenous infusion (drip), infusion motors, ventilators, radio and TV and 

other electronic devices are other sources of artifact generation. 

  

(a) Clean EEG                            (b) Muscle Activity 

  

(c) Eye Movements                     (d) Eye Blink 

   

(e) Pulse                                                (f) 60 HZ Line Noise 

Figure 1.7 Artifact Waveforms 
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1.3 MOTIVATION FOR THE THESIS 

 The major drawback in the removal of artifacts is the accuracy in 

the classification of artifacts. To overcome this problem, the usage of 

important techniques such as Independent component analysis, Haar wavelet 

transform, Neuro fuzzy filter and Multiwavelet transform has improved the 

accuracy in the classification of artifacts. 

 It is impossible to obtain complete information regarding the causes 

for the real world problems. This difficulty is mainly due to the system 

complexities and noninvasive techniques employed by scientists and 

engineers to analyze  the real world problems. Such problems can be analyzed 

using signal and image processing techniques but they tend to be blind due to 

the unknown origin of signals. In the earlier days, EEG signals were removed 

from artifacts using training techniques. In modern real time systems, blind 

signal processing techniques play a crucial role  adopted for research in many 

areas like biomedical engineering, medical imaging, speech enhancement, 

remote sensing, communication systems, exploration seismology, geophysics, 

econometrics, data mining, sensor networks and so on. 

 The three major areas in blind signal processing are Blind Signal 

Separation and Extraction, ICA and Multichannel Blind Deconvolution and 

Equalization. The above techniques can also be applied to the other two blind 

signal processing areas.These artifacts removal techniques turn up to be much 

interesting adopted as the central domain of this present work. 

1.4 LITERATURE REVIEW 

 One of the most commonly employed techniques in the detection 

and removal of artifacts is discarding the affected segments of EEG. Once an 

artifact is detected, a segment of fixed length, usually one second is discarded 
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from the time when the artifact was detected. A sudden increase in voltage 

above a threshold, usually above 100 µV, serves as an indication for the 

occurrence of eye blink in  an eye movement artifacts. All the other 

physiological and extra physiological artifacts are either ignored or manually 

marked by a practitioner and discarded. However, the amount of data 

available for analysis is reduced to a great extent due to the process of 

discarding the segments of EEG. 

 The artifacts that occur due to eye blinks are the first to be removed 

from the EEG signals. The most common technique that is employed in 

artifacts removal is regression that requires the proper measure of the artifact 

signal so that this unwanted signal can be ruled out or subtracted the desired 

EEG signal. In the removal of eye blink artifacts, regression using the 

Electroculogram channel was attempted in both time and frequency domain 

(Hillyard and Galambos1970, Verleger and Gasser 1982). But EOG is 

contaminated with EEG signals. Therefore, regression causes the removal of 

desirable EEG signals which is the major disadvantage of this technique. 

 Independent Component Analysis (ICA) can be effectively 

implemented in the nearly guassian signals. Dijuwari successfully 

demonstrated the usage of ICA in the separation of EMG from the affected 

EEG signals. ICA can be employed in the separation of any signals if the 

signals possess distributions close to guassian. The major working principle 

of ICA is the estimation of unmixing matrix which allows the estimation of 

independent components. This shows that the estimated independent 

components are nothing but the linear combination of recorded data 

possessing some original sources when the number of sources is higher than 

the number of recordings. In case the original sources are predominant, the 

estimated independent components similarity to the original sources. This 

clearly shows that when the number of recordings is less than the total 
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number of sources (artifacts sources), ICA is capable of separating the artifact 

components with higher magnitude. 

 Due to the recent advancements in the analytical techniques, the 

multivariate statistical analysis techniques such as Principal Component 

Analysis (PCA) are implemented in the detection and removal of artifacts 

from EEG (Berg and Scherg 1991). PCA assumes that the signals are 

temporally and spatially uncorrelated. 

 Seungjin Choi et al  blind Source Separation techniques (BSS) are 

indulged in the process of separating the source EEG signals into separate 

components and later construct the EEG signals.ICA is one of the most 

commonly employed BSS techniques. The fundamental principle of ICA is 

that it blindly separates mixtures of independent sources into independent 

components. ICA is most commonly employed in the removal of ocular 

artifacts from EEG signals. Preliminary studies indicate that ICA can be 

utilized to increase the strength of motor-related signal components in the Mu 

rhythms. ICA plays a major role in the removal of artifacts in BCI systems. 

Several artifacts such as EOG, EMG and ECG artifacts can be effectively 

removed from EEG using BSS methods. The BSS method does not 

necessitate the usage of reference artifacts for the removal of artifacts from 

the EEG signals. This is the major advantage of using BSS methods. 

However, the  major limitation is that these methods require visual inspection 

for the detection of artifact signals. 

 Principal component analysis (PCA) can be developed from many 

different points of view, but it is  most useful in the context of the artifact 

removal to view PCA as an optimization problem. PCA finds a linear 

transformation of a data set that maximizes the variance of the transformed 

variables subject to orthogonally constraints on the transformation and 

transformed variables (Berg and Scherg 1991). 



15 

 

 Once the artifact signals have been identified, the automatic 

removal of the artifact signals is made possible by implementing online 

filtering systems. One of the approaches suggests that the artifacts can be 

recognized by measuring the structure of the signal that can be measured 

using fractal dimension and a metric based on Auto-Regressive (AR) 

coefficient (Cichoki and Vorobyov 2000). For example, the eye blinks and 

heart beats possess consistent fractal dimensions. Jung has described that each 

of the artifacts is characterized by distinct spectral structure, which allows the 

automatic detection of  the artifact signals (Verobyov and Cichocki 2002). 

Jung (Jung and Humphries, 2000). Kalman filters and extended Kalman 

filters have  successfully been implemented in the artifacts removal. But the 

success of this method depends on the type of the  artifacts. One second 

windows containing muscle and movement artifacts can be successfully 

identified using this method. 

 The noise in satellite imagery can effectively be reduced using 

maximum signal fraction (MSF) approach. In order to maximize the signal-

to-noise ratio, a linear transformation is obtained by solving an optimization 

problem. This method is based on a set of  source signals  S  corrupted by 

additive noise N generate the data X as follows in Equation (1.1). 

 X = S + N              (1.1) 

 However, MSF problem requires the estimation of the noise 

covariance. 

 The most common method implemented in extracting similarity 

between two data sets is Canonical correlation analysis (CCA). This method 

is based on the assumption that a set of EEG observations can be partitioned 

into two sets namely X and Y, usually representing the left hemisphere 

electrodes and right hemisphere electrodes. Two linear transformations 
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corresponding to X and Y have been calculated by CCA. These linear 

transformations maximize the correlation between X and Y in the new 

coordinates. 

 The multivariate time series can be decomposed as a set of signals 

using the method of delays. The high sampling rates allow the detection of 

delays due to the signal propagation across the scalp. 

1.5 NEED FOR THE THESIS 

 Artifact removal is the process of identifying and removing 

artifacts from brain signals. Common methods for removing the artifacts in 

EEG signals are classified into (i) Principal Component Analysis (PCA) (ii) 

Canonical Correlation Analysis (CCA) (iii) Regression Method and (iv) Blind 

source separation  

 Principal Component Analysis 

 Lagerlund et al (2009) used Principal Component Analysis (PCA) 

to remove the artifacts from EEG. It outperformed the regression based 

methods. However, PCA cannot completely separate ocular artifacts from 

EEG, when both the waveforms have similar voltage magnitudes. PCA 

decomposes the components into uncorrelated, but not necessarily 

independent components that are spatially orthogonal and thus it cannot deal 

with higher-order statistical dependencies. 

 Canonical Correlation Analysis 

 CCA is used as a Blind Source Separation technique (BSS) for 

artifacts removal from EEG signal. It measures the linear relationship 

between two multi-dimensional variables, by finding two bases and bases are 
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optimal with respect to correlation. CCA method has considerable amount of 

spectral error and thus it cannot be implemented in real time. 

 Regression Method 

 It is based on complex regression analysis. It is suitable for 

handling transfer of EOG activity to EEG which can have different frequency 

and phase characteristics, because the regression formula is used in frequency 

domain. This technique is demanding because it requires quantitative data 

relating to several thousand individuals. Implementing the data collection can 

be time consuming and expensive. 

 Blind Source Separation  

 BSS techniques separate the EEG signals into components that 

“build” the EEG signals. They identify the components that are attributed to 

artifacts and reconstruct the EEG signal without these components. It has 

been widely applied to remove ocular artifacts from EEG signals (Amari et al 

1996). They usually need prior visual inspection to identify artifact 

components. 

 The major limitation in all these methods is that either the extracted 

EEG signal may contain noise or the discarded noise signal may contain 

desirable EEG signal. In this thesis, an attempt is made to improve the signal 

to noise ratio of the extracted EEG signal, and also to ensure that the removed 

noise signal does not contain the EEG component. 

 Independent Component Analysis observed from the literature 

(Acharya 2008) that JADE performs better than the other ICA Algorithms 

namely Fast ICA, Infomax, extended infomax in terms of execution time 

only.  The JADE Algorithm uses significant Eigen pairs of the cumulant 
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tensor F(M) to find out the estimated values of independent components. In 

this Improved JADE Algorithm, the tensor Eigen value decomposition is 

considered as more of preprocessing step. The Eigen value decomposition can 

also be viewed as diagonalization. Improved JADE provides better results 

among with four ICA algorithms in terms of their convergence speed, entropy 

and signal to Noise ratio. Even though, the fundamental limitation of ICA is 

that all but one of the underlying sources must be non-Gaussian to be 

completely recovered, as otherwise the central limit theory does not apply. 

Furthermore, the independent components can only be calculated up to their 

sign and scale. 

 Neuro-fuzzy systems which are an integration of neural networks 

and fuzzy logic. The computational process envisioned for neuro-fuzzy 

systems  starts with the development of a “fuzzy neuron” based on the 

understanding of biological neuronal morphologies, followed by learning 

mechanisms (Krishnaveni et al 2006). This leads  to the functions of a fuzzy 

neural computational process.Development of fuzzy neural models motivated 

by biological neurons models  synaptic connections which incorporates 

fuzziness into neural network. Development of learning algorithms is the 

method of adjusting the synaptic  weights .In this report  Neuro fuzzy filter 

gives the better results in terms of Signal to Noise ratio and correlation factor 

compare with IJADE. Even though it has some limitation, the various 

artifacts mixed in the EEG signal cannot be filtered directly because they pass 

through the human body and turn into an interference component. This 

interference component cannot be estimated directly because the spectrum of 

the EEG signal and the interference signal overlap each other and also 

because of the characteristics of noise and the EEG signal which vary with 

time. 
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 The Haar transform which serves as a prototype for all other 

wavelet transforms is the simplest of all the transforms. A discrete signal is 

decomposed into two sub signals of half its length using Haar transform. One 

of the sub signals denotes the running average of trend while the other 

denotes the running difference or fluctuation. The selection of threshold and 

thresholding function plays a vital role in signal denoising .In order to discard 

the noise coefficients efficiently, a proper thresholding function is essential.  

The thresholding function can be implemented to retain the wavelet 

coefficients. The retained the wavelet coefficients represent the de-noised 

signal while the discarded coefficients represent the noise signals. Inverse 

wavelet transform is implemented to obtain the denoised EEG signal. In this 

work, Ocular artifact zones are identified by the use of applied wavelet based 

adaptive thresholding algorithm, which prevents the removal of background 

EEG information.Haar wavelet transform gives the better result in terms of 

signal to Noise ratio compare with Neuro fuzzy filter. The technical 

disadvantage of the Haar wavelet is that it is not continuous, and therefore not 

differentiable. Haar wavelet transforms have single scaling function and 

single wavelet function. It is in the form of square (Bukhari et al 2011). So, 

all the signal to be analysed in the square form only. It gives better 

representation of approximation only. Detailed representation is very less. To 

overcome this disadvantage Multiwavelet Transform is used in this work. 

Multiwavelet transform represent both approximation and detail better than 

wavelet transform. 

 Multiwavelet has several advantages in comparison with scalar 

wavelet. The features such as compact support, orthogonality, symmetry, and 

higher order approximation are known to be important in signal processing.  

In this method thresholding technique is used for signal de-noising. 

Decomposing a signal using the wavelet transform, a set of wavelet 

coefficients that correlates to the high frequency sub bands. These high 
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frequency sub bands consist of the details in the data set.  If these details are 

small enough, they might be omitted without substantially affecting the main 

features of the data set. The de-noising of EEG signal is carried out by using 

different combinations of threshold limit, thresholding function and window 

sizes.  Choice of threshold limit and thresholding function is a crucial step in 

the de-noising procedure, as it should not remove the original signal 

coefficients leading to loss of critical information in the analyzed data. 

Because of using this transform the artifacts in the EEG signal could be 

removed without loss of information. Compare to previous methods, 

multiwavelet transform has outperformed IJADE, Neuro fuzzy filter and 

wavelet transform as far as SNR and correlation factor concerned.  

1.6 SCOPE OF THE THESIS 

 The focus of this work is to use the different novel approach 

methods like Improved JADE algorithm, neuro fuzzy filter, Haar wavelet 

transform and Multiwavelet transform in artifact removal in order to speed up 

signal processing and improve the SNR and correlation factor. 

 Hence, the objectives of this thesis are identified as follows: 

 Independent Component Analysis : To create a framework 

to accommodate Improved JADE Algorithm to estimate the 

convergence speed of the algorithms in removal of artifacts 

from EEG data. 

 Neuro fuzzy filter: To apply Neural network and fuzzy logic 

based filter for the removal of artifacts evaluate the 

performance of  extracted EEG.. 
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  Haar Wavelet transform: Create a new method to remove 

artifacts from EEG signal based on Haar transform and 

frequency analysis.  

 Multiwavelet transform: Generate a method thresholding 

technique is used for signal de-noising 

1.7 STRUCTURE OF THE THESIS 

 The thesis is organized as follows: 

 The Introduction chapter gives the explanation of brain and its 

structure. It also provides the general introduction EEG and its artifacts 

removal techniques. In this chapter, the motivation, scope of the research 

work and review of the related work, this provides the ground work for the 

research.  

 Chapter 2 describes the basic principle behind the independent 

component analysis technique is described. The contrast functions for 

different routes to independence are clearly depicted. Different existing 

algorithms for ICA are briefly illustrated. This chapter discusses Improved 

JADE Algorithm, the functions that measure the non-Gaussianity of any 

dataset which leads to the gradient algorithm to maximize the non-gaussianity 

of datasets which in turn is the basis of Fast-ICA algorithm. It explains the 

higher order cumulants followed by a discussion of cumulant tensors. The 

role of cumulant tensors in the ICA algorithm IJADE is discussed. IJADE 

presents the better results in terms of their convergence speed and entropy 

compare with other ICA. 

 In Chapter 3 illustrates the principle of Haar transform is 

described clearly. This transform cross-multiplies a function against the Haar 

wavelet with various shifts and stretches, like the Fourier transform cross-
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multiplies a function against a sine wave with two phases and many stretches. 

The Haar transform can be thought of as a sampling process. It provides 

shortest path and time consumption is less. In this chapter , the Haar wavelets 

higher orders are used to decompose the recorded EEG signal and  to detect 

the exact moment when the state of the eyes changes and on subsequent 

section to eye-blinks and movements of the eyeballs as well. 

 In Chapter 4 discusses the principle behind the neuro fuzzy system 

is depicted clearly. In the field of artificial intelligence, neuro-fuzzy refers to 

combinations of artificial neural networks and fuzzy logic. The strength of 

neuro-fuzzy systems involves two contradictory requirements in fuzzy 

modeling: interpretability versus accuracy. In practice, one of the two 

properties prevails. The neuro-fuzzy in fuzzy modeling research field is 

divided into two areas: linguistic fuzzy modeling that is focused on 

interpretability, mainly the Mamdanimodel; and precise fuzzy modeling that 

is focused on accuracy, mainly the Takagi-Sugeno-Kang (TSK) model. Thus 

by using neuro fuzzy filter the artifacts are extracted from EEG signal.  

 Chapter 5 explains the details behind the multiwavelet transform. 

They are defined using several wavelets with several scaling functions. 

Multiwavelet has several advantages in comparison with scalar wavelet. The 

features such as compact support, orthogonally, symmetry, and higher order 

approximation are known to be important in signal processing. Multiwavelets 

provide one alternative to the wavelet transform. Multiwavelets are very 

similar to wavelets but have some important differences. In particular,  where 

as wavelets but have an associated  scaling function and wavelet function, 

multiwavelets have two or more scaling and wavelet function. Multifilter 

construction methods are already being developed to exploit the useful 

properties such as ortogonality, symmetry and high order of approximation. 
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Because of using this transform the artifacts in the EEG signal could be 

removed without loss of information. 

 Chapter 6 concludes with contributions made in the thesis and 

suggestions for further research that can be pursued on the reported work. 



24 

 

 

CHAPTER 2 

INDEPENDENT COMPONENT ANALYSIS 

 

2.1 INTRODUCTION  

 Blind source separation (BSS) refers to the problem of recovering 

signals from several observed linear blind mixtures. The attraction of blind 

source separation modeling in signal processing is only a mutual statistical 

independence between source signals that is assumed. The a priori 

information such as characteristics of the source signals, the mixing matrix or 

the arrangement of sensors is not required. Several active signal sources that 

occur simultaneously at different spatial locations can then be separated by 

exploiting the mutual independence of sources. Among various BSS methods 

the Independent component Analysis (ICA)is extensively used for biomedical 

signal processing, as it separates the components in terms of their statistical 

independence (Hyvarinen, 1999). 

 ICA is an extension of Principal component Analysis(PCA) but it is 

more powerful in the field of signal analysis than PCA. In mid 90‟s several 

new ICA algorithms (Pierre Comon 1992) were introduced with impressive 

demonstrations focusing on problems like separating different speech signals 

from a mixed signal. The applications of ICA include not limiting to the fields 

of biomedical, telecommunications, audio and video signal processing feature 
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extraction, data mining, and functional time series analysis. In general, ICA 

technique can be regarded as a technique to separate signals from a mixture. 

These signals can be mixed either linearly or non-linearly. But mostly it is 

assumed that signals are mixed linearly and the research is based on this. 

 There are several ICA algorithms in use. Some of those algorithms 

are Fast ICA, Joint Approximate Diagnalization of Eigen matrices(JADE), 

First Order Blind Identification (FOBI), Maximum Likelihood and Infomax, 

algorithms based on Kernel methods, and algorithms that use time structure 

like Second Order Blind Identification (SOBI) and so on. If the independent 

components have non-Gaussian distribution, the above mentioned algorithms 

and other algorithms cannot be implemented. If data is time dependent and 

the independent components have Gaussian distribution, time-structured 

algorithms like SOBI can be used to find independent components. Hence, 

most of the algorithms do converge as long as independent components have 

non-Gaussian distribution, as it is concerned theoretically for convergence 

(Stone 2004). However practical observations are different.  It is possible that 

some algorithms converge for one type of data while others do not. 

Convergences of different algorithms have already been explored and it has 

been established that some algorithms converge better and faster than the 

others. But it is quite possible that faster converging algorithms do not 

converge for some specific type of data while some other algorithm does or 

give better estimate of the mixing matrix while others do not. Figure 2.1 

shows how to frame work for selecting the ICA algorithm.   
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Figure 2.1 A Framework for using ICA 

 This chapter initially gives an introduction and background to ICA, 

ICA theories followed by an explanation of different ICA algorithms to 

achieve the goal of separation besides  introducing the  major preprocessing 

steps to implement ICA algorithms. 

2.2 ICA MODEL 

 A simple mathematical representation of ICA model (Acharya 

2008) is as follows: 

 Consider a simple linear model which consists of N sources of T 

samples i.e.., )](....)(....)1([ TstssS
iiii

 . The symbol t here represents time but 

it may represent some other parameter like space. M weighted mixtures of the 

sources are observed as X, where )]().....()....1([ TxtxxX
iiii

  . This can be 

represented as in Equation (2.1)   

 x= As + n              (2.1) 
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and n represents the Additive White Gaussian Noise (AWGN). It is assumed 

that there are at least as many observations as sources i.e., NM  . The 

NM  matrix A is represented as in Equation (2.3)   
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 This relates X and S. A is called as mixing matrix. The estimation 

of the matrix S with knowledge of X is the linear source separation problem. 

This is schematically shown in Figure 2.2. A is the mixing matrix and B is the 

unmixing matrix.   

 

 

Figure 2.2 Illustration of Mixing and Separation System for ICA 

 The source separation problem cannot be solved if there is no 

knowledge of either A or S apart from the observed mixed data X. If the 

mixing matrix A is known and the additive noise n is negligible, the original 
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sources can be estimated by evaluating the pseudo inverse of the matrix A 

which is known as the unmixing matrix B as shown in Equation (2.4). 

 BX=BAS=S             (2.4) 

 For cases where the number of observations M equals number of 

sources N (i.e. M =N), the mixing matrix A is a square matrix with full rank 

and B = A
-1

.  

 The necessary and sufficient condition for the pseudo-inverse of A 

to exist is that it should be of full rank. When there are more observations 

than the sources (i.e. M >N), there exist many matrices B which satisfy the 

condition BA = I. Here the choice B depends on the components of S that 

which is interested in. When the number of observations is less than the 

number of sources (i.e. M <N), a solution does not exist unless further 

assumptions are made.  

 On the other side of the problem, if there is no prior knowledge of 

the mixing matrix A then the estimation of both A and S is known as the BSS 

problem. The problem defined in Equation (2.1) under the assumption of 

negligible Gaussian noise n is solvable with the following restrictions.  

 The sources (i.e. the components of S) are statistically 

independent.  

 At most one of the sources is Gaussian distributed  

 The mixing matrix is of full rank.  

 Above discussion leads to following definition of ICA: 
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 Definition: ICA is a linear transformation S=WX of a multivariate 

signal X, such that the components S are of as independent as possible in the 

sense of maximizing some objective function ),.....,(
21 N

SSSf , which is a 

measure of statistical independence.  

2.2.1 Assumptions For ICA Model 

 The following assumptions (Acharya 2008) made ensure that the 

ICA model estimates the independent components meaningfully. The first 

assumption is only the true requirement which ICA demands. The other 

assumptions ensure that the estimated independent components are unique. 

(1) The latent variables (or independent components) are 

statistically independent and the mixing is linear. 

(2) There is no more than one Gaussian signal among the latent 

variables and the latent variables have cumulative density 

function not much different from a logistic sigmoid  

(3) The number of observed signals, m, is greater than or equal to 

the number of latent variables, n (i.e. nm  ). If n > m, the 

special category of Independent Component Analysis called 

ICA with over-complete bases .In such a case the mixed 

signals do not have enough information to separate the 

independent components. There have been attempts to solve 

this particular problem but no rigorous proofs exist yet.  If m > 

n, then there is redundancy in the mixed signals. The ICA 

model works ideally when n = m. 

(4) The mixing matrix is of full column rank, which means that 

the rows of the mixing matrix are linearly independent. If the 

mixing matrix is not of full rank, the mixed signals will be 

linear multiples of one another. 
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(5) The propagation delay of the mixing medium is negligible. 

2.2.2  Preprocessing of Data for ICA 

 Before applying an ICA algorithm to the data, it is usually very 

useful to preprocess the data (Acharya 2008). In this section, some 

preprocessing techniques that make the problem of ICA estimation simpler 

and better conditioned are given.  

 Centering: Centering is achieved simply by subtracting the 

mean of signal from each reading of that signal. 

 Whitening: A covariance matrix can be formed by taking the 

covariance between every pair of signals and forming a 

matrix. The covariance matrix are  square and symmetric. 

Perform Eigen value decomposition on the covariance matrix 

and then transform the data so that the covariance matrix of 

the transformed data is equal to the identity. This procedure is 

also called whitening (sphereing) since it normalizes the 

eigenvalues of the covariance matrix. 

2.3 ALGEBRAIC ICA ALGORITHM 

 An algebraic solution to ICA is proposed by Taro Yamaguchi. This 

is a non-iterative algorithm but becomes extremely complex to compute when 

the number of sources goes more than two (Mackay 1996). For two sources 

separation it works very fast .Two observed signals x1 and x2 are given by 

linear mixture of two independent original signals 1
s  and 2

s  as in  

Equation (2.5).   
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where  and  are unknown mixing rates. The algebraic solution to  and 

 are given by Equation (2.6) and Equation (2.7). 
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where ,,,,,,,,,
1098754321

CCCCCCCCC and 
11

C are as shown in Equation (2.8)  
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where E [.] denotes the expectation operation.  

  and   are obtained by solving the Equation (2.6), Equation (2.7) and 

Equation (2.8) with the Ferrari method. Excluding the solutions having non-

zero imaginary parts and negative sizes, the proper solution is selected. 

Original independent signals are computed from Equation (2.7) by solving 

value of   and  . 
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2.4 FAST ICA ALGORITHM 

 Fast ICA tends to maximize the measure of non-Gaussianity for the 

input dataset thus yielding independent components. This Algorithm starts 

with the discussion that the function that measures the non-Gaussianity which 

leads to the gradient algorithm to maximize the non-Gaussianity, which in 

turn is the basis of Fast ICA algorithm. 

2.4.1 Measures of Non-Gaussianity 

 There are two functions that are used to measure the Gaussianity or 

non-Gaussianity of a dataset, Kurtosis and Negentropy. These two functions 

are the basis of algorithms based on the maximization of non-Gaussianity like 

Fast ICA. Explanation of these two functions is given as follows: 

2.4.1.1 Kurtosis 

 The fourth-order statistics of a random variable is called Kurtosis 

(Amari and Cichocki 1996). More specifically it is the fourth cumulant of a 

random variable. For a random variable with zero mean, the kurtosis is given 

by Equation (2.9). 

 224
}][{3}{)( xExExkurt             (2.9) 

 If x also has unit variance then Equation (2.9) becomes as Equation 

(2.10). 

 3}{)(
4

 xExkurt           (2.10)  

 For Gaussian variables, kurtosis is equal to zero. Variables having 

positive value of kurtosis are called super Gaussian and the one having 

negative kurtosis are called sub Gaussian. 
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 Super Gaussian random variables are the one having distributions 

that resemble to Gaussian distribution i.e. a high value usually at zero         

(for zero-mean variable) and smaller values as the variable moves away from 

zero. Laplacian random variables are super Gaussian with probability density 

given by Equation (2.11). 

 )exp(
2

)( xxP
x




                     (2.11) 

where λ determines both the variance and height of the peak of Laplacian 

density. Sub Gaussian variables have typically a flat probability density 

function. Common example is uniform random variables. For a zero-mean 

uniform variable the probability density function is given by  

Equation (2.12). 
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       = 0         elsewhere         (2.12) 

where a determines the width and height of the density function. 

 To use kurtosis to find independent components, one starts with an 

arbitrary vector w and calculates the kurtosis of y = w
T
z, where z is the input 

whitened dataset. Then using one of the gradient methods, a new vector wnew is 

being calculated that gives a new value of kurt(y) moving towards more 

negative if the old kurtosis value was negative or more positive if it was 

positive until it reaches to its maxima or minima (extreme point). At that point 

y is the estimation of one of the original signal s. (Hyvarinen et al  2001) 

 The absolute value of kurtosis is widely used in estimating non-

Gaussian variables in ICA and related fields. It is simple to use, both 

computationally and theoretically. However estimating non-Gaussianity 
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through maximization (minimization) of kurtosis has its disadvantages. The 

problem with kurtosis is that it can be very sensitive to outliers (a value far 

from most others in a set of data). Hence its value may depend on only few 

data points in the tails of the distribution, which may be erroneous or 

irrelevant observations. Thus in case of observed signal where there are some 

outliers due to some error, it is not wise to use kurtosis. Negentropy on the 

other hand gives a better option to estimate non-Gaussianity of datasets and 

that is the reason to be used as the basis of Fast ICA algorithm in this 

research. 

2.4.1.2 Negentropy 

 Negentropy (Amari and Cichocki 1996) is based on the information 

theoretic quantity of (differential) entropy. Entropy of a random variable is 

defined as the degree of information that observations of a variable gives. The 

more randomness in a variable, the larger its entropy will be.  

 For a discrete random variable Y, entropy can be given by  

Equation (2.13) , 

  

i

ii
ayPaYPYH )(log)()(         (2.13) 

 For continuous random variables, entropy is called Differential 

Entropy, given by Equation (2.14). 

 





 dyyPyPyH
YY

)(log)()(          (2.14) 

 Gaussian variables have the largest entropy among all the random 

variables having equal variances. That means Gaussian distribution is the 

most random or least structured distribution. 
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 Negentropy is a slightly modified version of differential entropy. 

For a random variable vector y it can be given as in Equation (2.15). 

 )()()( yHyHyJ
gauss

          (2.15) 

where ygauss is a Gaussian random variable vector of the same covariance 

matrix as y. 

 Since Gaussian variables have the highest value of entropy, 

negentropy cannot be negative. It will be positive if entropy of y is smaller 

than that of ygauss and zero if y is a Gaussian random vector. Negentropy is the 

optimal estimator of non-Gaussianity as far as statistical properties are 

concerned but calculation of Negentropy using  the definition given in 

Equation (2.15) can be very complex for certain data and so the 

approximations to calculate Negentropy are generally used. 

 The advantage of using negentropy or equivalently, differential 

entropy, as a measure of non-Gaussianity is that it is well justified by 

statistical theory. In fact, Negentropy, in some sense, is the optimal estimator 

of non-Gaussianity  as far as statistical properties are concerned. The problem 

in using negentropy is, however, computationally very difficult. Estimating 

Negentropy using the definition would require an estimate (possibly non-

parametric) of the pdf. Therefore, simpler approximations of negentropy are 

very useful, which is given in next section. 

2.4.2 Approximations to Negentropy 

 The estimation of negentropy is difficult, as mentioned above, and 

therefore this contrast function remains mainly a theoretical one. In practice, 

some approximations have to be used. Here approximations that have very 
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promising properties, are introduced and to  be used in the following to derive 

an efficient method for ICA. 

 Classically negentropy is approximated using higher order 

moments. One way of the approximation is as in Equation (2.16). 

 223
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48
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)( ykurtyEyJ             (2.16) 

 The random variable y is assumed to be of zero mean and unit 

variance. 

 However, the validity of such approximations may be rather 

limited. In particular, these approximations suffer from the non-robustness 

encountered with kurtosis. 

 

 To avoid the problems encountered with the preceding 

approximations of negentropy, new approximations were developed 

(Hyvarinen 1999, Amari and Cichocki 1996). These approximations were 

based on the maximum-entropy principle. In general to obtain the 

approximation as in Equation (2.16). 
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           (2.17) 

where ki are some positive constants, and v  is a Gaussian variable of zero 

mean and unit variance (i.e. standardized). The variable y is the estimated 

random variable with zero mean and unit variance, and the functions Gi are 

some non-quadratic functions (Hyvarinen, 1999 , Amari and Cichocki 1996).  

Note that even in cases where this approximation is not very accurate, 

Equation (2.17) can be used to construct a measure of non-Gaussianity that is 
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consistent in the sense that it is always non-negative, and equal to zero if y 

has a Gaussian distribution. 

 In case of using only one non-quadratic function G, the 

approximation in Equation (2.17) becomes as Equation (2.18). 

 2
)}]({)}({[)( vGEyGEyJ              (2.18) 

for practically any non-quadratic function G. This is clearly a generalization 

of the moment-based approximation in Equation (2.16), if y is symmetric. 

Indeed, taking G(y)= y
4 

, one then obtains exactly Equation (2.16), i.e. a 

kurtosis-based approximation. 

 But it is to notify that by choosing G wisely, one obtains 

approximations of Negentropy that are much better than the one given by 

Equation (2.16). In particular, choosing G that does not grow too fast, one 

obtains more robust estimators. Some of the choices of G are in  

Equation (2.19). 
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where 1≤ a ≤ 2 is some suitable constant. 

 Thus approximations of Negentropy give a very good compromise 

between the properties of the two classical non-Gaussianity measures given 

by kurtosis and Negentropy. They are conceptually simple, fast to compute, 

yet have appealing statistical properties, especially robustness. Therefore,  

one can use these contrasting functions in ICA methods. Since kurtosis can be 

expressed in this same framework, it can still be used by ICA methods. A 
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practical algorithm based on these contrast functions will be presented in  the 

following sections. 

2.4.3 Algorithms based on Negentropy 

 Before discussing gradient algorithm based on negentropy that 

leads to the Fast ICA algorithm, it is important to discuss the condition 

imposed on the unmixing vectors wi which constitute the unmixing matrix W 

 Assume the general ICA model, x = A s, with two unknown 

variables s1 and s2, both having zero mean and unit variances. Assume the 

data is not whitened and the estimated value of vector s can be given by  

y = W x where W is the estimate of inverse of the mixing matrix A. To find 

out the optimization landscape of gradient algorithm, assume one of the 

components of y say yi as given by the Equation (2.20). 

 xWy
T

ii
             (2.20) 

where T

i
W  is the transpose of one of the columns of matrix W. Substituting 

value of x from the general model of ICA into Equation (2.20), yields the 

Equation (2.21) , 
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where AWq
T

i

T
 . Since variances of s1 and s2 are unity, hence it can be 

assumed that yi also has unit variance as shown in Equation (2.22) i.e., 
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 Geometrically, vector q is constrained to a unit circle in a 2-D 

plane. 
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 Now consider the whitened input vector z = V x. Replacing x with 

z in Equation (2.20) will result in maximizing wi 
T
 z for non-Gaussianity. 

From Equation (2.21), the new expression for q can be given by the  

Equation (2.23). 
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WVAq )(            (2.23) 

 Therefore the square of the norm of q can be given as in  

Equation (2.24). 
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 Hence it turns out to be constraining q on a unit circle  that is 

equivalent to constraining wi on a unit circle in case of whitened data. Thus 

the value of Negentropy corresponding to wi
T
z will be maximized under the 

constraint that ||wi|| = 1. This constraint requires that after updating wi through 

algorithm it should be divided by its norm. It should be noted here that the 

linear combinations wi
T
z can be interpreted as projections of vector z on the 

vector w, thus each point on the unit sphere (unit circle in the case of 2-D as 

considered so far) corresponds to one of the projections of z. 

2.4.4 Gradient Algorithm 

 Assume only one non-quadratic function for Equation (2.18), and 

then the Negentropy can be given as Equation (2.25). 
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 Let y = w
T
z be one of the estimated input data vector and 

assume )}]({)}({[ vGEZWGE
T

 . The gradient algorithm to maximize 

negentropy can be evaluated as taking the gradient of Equation (2.25) with 
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respect to w and then normalizing the result on ||w||
2
 = 1, as shown in 

Equation (2.26). 
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 The constant   gives the algorithm a „self-adaptation‟ quality.  

 The algorithm can further be simplified by observing that the 

constant   would not change the stationary points of the learning rule, only 

its sign affects the stability of the learning rule (or convergence of the 

learning rule). If there is some priori information on the distribution of the 

independent components available then the sign of   can be estimated and 

used in the weight update expression instead of using and updating  . The 

following is a brief summary of the gradient algorithm using negentropy: 

Step1 : Center the data to make its mean zero 

Step 2 : Whiten the data to get z 

Step 3 : Choose an initial value of w randomly that has unit norm and an 

initial value of   

Step 4 : Update )}({
'

zWzGEW
T

  

Step 5 : Normalize w on a unit sphere, i.e.,
W

W
W 

 

Step 6 : If the sign of   is not known prior, update    

    )}]({)([ vGEZWG
T   

Step 7 : If not converged, i.e., a new w is not close enough to new w, go 

back to step 4. 
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2.5 IMPLEMENTATION OF  FAST ICA ALGORITHM 

 The main advantage of using the gradient method to maximize 

negentropy is that the inputs z(t) can be used in the algorithm at once, thus 

enabling fast adaptation in non-stationary environment. However 

convergence is slow and depends on a good choice of learning rate  . 

 To make this method efficient, a fast-fixed point algorithm is 

devised, which is also called Fast ICA for Negentropy. To understand this 

algorithm it should be noted that at a stable point of the gradient algorithm, 

the gradient must be pointing towards w or it must be a scalar multiple of w. 

This means that adding the gradient of negentropy in w would not change its 

direction at the stable points and hence convergence can be obtained. This 

means that Equation (2.26) can be written as Equation (2.27). 
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          (2.27) 

 The coefficient   is omitted because it would be eliminated by the 

normalization. Iteration in Equation (2.27) does not however have 

convergence as good as the one using kurtosis. The reason is that the non-

polynomial moments (G‟s) do not have same nice algebraic properties as 

cumulants like kurtosis. Hence to have a better convergent algorithm the 

iteration in Equation (2.27) has to be modified. This modification can simply 

be done by adding some multiple of w to the both sides of the iterant term in 

Equation (2.27) and then changing the value of multiple to find a better 

convergence speed as in Equation (2.28).  

 WzWzGEWzWzGEW
TT
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''       (2.28) 
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 Adding a multiple of w to the both sides of Equation (2.27) would 

not change the direction of the vector. After normalization in the next step, w 

will be constrained to the unit sphere again. A suitable value of α and thus the 

Fast ICA algorithm can be found using Newton‟s method for solving 

Equation s. Newton‟s method can briefly explained as follows: 

 To find a maxima or minima of any function with respect to some 

variable, first the function is expanded using Taylor‟s series and the terms 

above the quadratic terms are dropped to keep it manageable (since higher 

order terms don‟t contribute a lot in the total value of the function). Let E  

(not expectation) be a cost or error function which has to be minimized 

around vector w(n) having m elements and n being the number of iteration. 

The change in the cost function can be written as in Equation (2.29). 

 ))(())1(()( nWEnWEWnE       
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              (2.29)
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where  g(n)= mx1 gradient vector of cost function evaluated at w(n), and, 

H(n) is an mxm 2
nd

 order derivative matrix of the cost function E(w(n)) 

evaluated at w(n), called Hessian Matrix. Hessian Matrix H is given by 

Equation (2.30). 
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 Differentiating ΔE (W (n)) w.r.t Δ w (n) to find out the minimal 

value of ∆E gives the condition as in Equation (2.31). 
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 Expression in Equation (2.31) is the Newton‟s method for updating 

the vector w to move towards the minimization of the cost function. The 

advantage of Newton‟s method is fast convergence but it is computationally 

more intensive since one has to calculate inverse of Hessian matrix at each 

step. 

 In order to avoid the cost and time consuming calculation of the 

inverse of Hessian matrix in the Newton‟s method, an approximation of this 

method is developed that avoids the use of matrix inversion without 

sacrificing its essence to employ ICA algorithm (Wu and Yu 2005). The 

approximation of Newton‟s method calls for the use of Lagrangian rule for 
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constrained optimization. Lagrangian rule for constrained optimization can be 

briefly described as follows. 

 Assume a cost function E(w) (E is not expectation) which is 

supposed to be minimized or maximized under some constraint Hi(w) = 0, 

where i = 1,2,3, …., k. One can write the Lagrangian function based on the 

given information as in Equation (2.32). 
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where
k

 ,.......,,
21

 are called Lagrangian multipliers. The minimum 

(maximum) point of Equation (2.32) where its gradient is zero with respect to 

both w and all of the
i

  gives the solution to the original constrained problem, 

i.e., minimization of E(w) under some constraint Hi(w) = 0. The gradient of 

),.......,,,(
21 k

WL   with respect to
i

 gives the i
th

  constraint function Hi 

(w), so putting all these to zero will give the original constraint condition. 

When gradient of ),.......,,,(
21 k

WL   is taken with respect to w and 

equate it to zero, one will get the Equation (2.33). 
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 Hence the minimization problem has been reduced to two sets of 

Equation s that are much easier to solve. A possible way to solve these two 

sets, one given by the constraints, the other by Equation (2.33), is some 

appropriate iteration method like Newton iteration. 

 Moving back to the application of Lagrangian method to 

approximate Newton‟s method for a better algorithm for ICA using 

negentropy gradient, first observe that maxima of approximation of 
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negentropy as given in Equation (2.25) for y = w
T
z are typically obtained at 

certain optima of E{G(w
T
z)}. Now from Equation (2.33) the optima of 

E{G(w
T
z)} for constraint ||w||

2
 = 1 can be evaluated as in Equation  (2.34), 
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where H(w) = ||w||
2
 – 1 = 0 is the only constraint to find out the extreme of 

E{G(w
T
z)}. To solve Equation (2.34) one can use Newton‟s method to find 

the optima with respect to w. Let wzWzGEF
T

 )}({
' , the derivative of 

F, i.e., the second derivative of Lagrangian function can be evaluated as in 

Equation (2.35),  
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 Thus the Newton iteration from Equation (2.31) can be written as 

in Equation (2.36). 

 
IzWGzzE

WzWzGE
W

W

F

W

L

WW
TT

T







































)}({

)}({

''

'

       (2.36) 

 To simplify the calculations, since the vector z is sphered then 

W

F




can be approximated as in Equation  (2.37). 
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 Hence the gradient becomes a diagonal matrix and can easily be 

inverted. Thus the algorithm becomes as in Equation  (2.38). 
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 Multiplying both sides of Equation (2.38) by IzWGE
T

])}({[
''

  

and simplifying the resulting expression can be written as Equation (2.39), 
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 Left hand side of Equation (2.39) is nothing but a new variable to 

which right hand side value will be assigned. Hence the Fast ICA algorithm 

based on negentropy will become as in Equation (2.40). 

 
old

TT
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        (2.40) 

 A brief summary of Fast ICA algorithm based on negentropy for 

finding one maximally non-Gaussian direction, i.e., estimating one 

independent component is as follows: The expectations are estimated in 

practice as an average over the available data set. 

1. Center the data to make its mean zero. 

2. Whiten the data to get z. 

3. Choose an initial weight vector w of unit norm. 
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4. Choose a non-quadratic function G that does not grow too fast 

(to obtain a better estimation of negentropy). Some of the 

example functions are given in Equation (2.20). 

5. Calculate the new value of w using formula given by Equation 

(2.40). 

6. Divide the new value of weight vector by its norm to constrain 

it to a unit sphere. 

7. If not converged, i.e., if direction of the new w is not close 

enough to the old w (their absolute value of dot product is not 

close enough to unity), go back to step 5. 

2.5.1 Estimating Several Components at the Same Time 

 The main task of any ICA algorithm is to yield an estimate of the 

input independent components, say y, or in other words to estimate the 

inverse mixing matrix 1~ 
A (or 1

A ). Let W be the estimate of inverse of A
~

 and 

since A
~

 is orthogonal, W will also be orthogonal with its column vectors wi 

that are orthogonal to each other. This can be proved in Equation (2.41) by 

observing that independent components must be uncorrelated, hence for two 

independent components yi and yj:  

 0}{))({(}{ 
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 Therefore for whitened data, uncorrelatedness is equivalent to 

orthogonally. 

 So far the Fast ICA algorithm is given for estimating only one 

component at a time (also called one-unit algorithm). One way to estimate n 

different independent components is to run the one-unit algorithm at least n 

times with each run yielding vectors w1, ……, wn respectively. To prevent 
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different vectors converging at the same point and thus yielding the same 

value, one must orthogonalize the vectors w1, …… , wn after every iteration. 

A more efficient method is to orthogonalize all the columns of W 

simultaneously using symmetric orthogonalization. 

 To carry out symmetrical orthogonalization, first 2

1

)(


WW
T  is 

calculated using eigenvalues decomposition of the symmetric matrix (W
T
 W) 

as in Equation (2.42). 

 TT
EDEEDEWW 

 1           (2.42)  

where E is the matrix whose columns are eigen vectors of W
T
W and D is a 

diagonal matrix with the eigen values corresponding to the column eigen 

vectors of E as its main diagonal. Since W
T
W is symmetric, its eigen matrix 

E is orthogonal, i.e., 2

1

1
)(



 WWEE

TT   will then be equal to the  

Equation (2.43). 
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 Finally the symmetric orthogonalization of W is given the  

Equation (2.44). 
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                   (2.44) 

 In this research the Fast ICA algorithm with symmetric 

orthogonalization of unmixing vectors is used for the experiments can be 

summarized as follows: 

1. Center the data to make its mean zero. 

2. Whiten the data to get z. 
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3. Choose m, the number of independent components to 

estimate. 

4. Choose initial values of vectors wi, i = 1, 2, …., m randomly, 

each of unit norm. 

5. For every wi, i = 1, 2, …., m, run one-unit algorithm as given 

by Equation (2.40) in parallel. 

6. Construct a W matrix with wi as its columns. 

7. Do a symmetric orthogonalization of W as given in Equation 

(2.44) 

8. If not converged go back to step 5 

2.6 JADE ALGORITHM 

 JADE is developed by Cardoso and Souloumiac (Bell and 

Sejnowski 1995) and is based on the higher-order cumulant tensors, more 

specifically the  fourth order cumulant tensor of the input data vector. Tensors 

are considered to be  generalization of matrices or linear operators. Cumulants 

tensors are the generalization of covariance matrix if the data has zero mean. 

This chapter begins with an explanation of  the high-order cumulants 

followed by a discussion of cumulant tensors. The role of cumulant tensors in 

ICA is explained later and finally algorithm based on eigen matrices of  the 

fourth-order Cumulants tensors, JADE, is explained. 

2.6.1 Cumulants 

 Let x be a real-valued, zero-mean, continuous scalar random 

variable with probability density function )( XP
x

. The first characteristic 

function of x is defined as the continuous Fourier transform of the 

pdf )( XP
x

is given in Equation (2.45),    
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where the last term in the above Equation is Taylor series expansion of the 

characteristic function. It can be seen from Equation (2.45) that the 

coefficients of the expansion are moments E {xk} of x. Hence the first 

characteristic function is also called moment generating function. 

 The second characteristic function is the natural logarithm of the 

first characteristic function as in Equation (2.46). 
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where the last term again is the Taylor series expansion of the second 

characteristic function of x. The k-th Cumulant is now defined as the 

coefficients of the Taylor series expansion of the second characteristic 

Equation of x in Equation (2.47), i.e.  
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 The first three cumulants for a zero-mean random variable x are 

equal to its respective moments while the fourth cumulant is kurtosis. 

 Similarly if x is a multivariate random vector, the first and second 

order characteristic functions will still be the similar Equation s as given by 

Equation (2.45) and Equation (2.46) with the exception that now instead of 

scalar quantities, vector quantities will be used for the transformed variable 

space ω and the probability density function of vector x will be given 

by )( XP
x

. Now the cumulants will be called cross-cumulants in analogy to 

cross-covariance. It can be shown that the second, third and fourth order 
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cross-cumulants for a zero-mean random vector x are given by the  

Equation (2.48) 

 }{)(
, jiji

xxExxCum   

 }{),,(
kjikji

xxxExxxCum   

 }{}{}{),,,(
lkjilkjilkji

xxExxExxxxExxxxCum   

 }{}{}{}{
kjliljki

xxExxExxExxE           (2.48)  

 Hence, covariance matrix is the  second-order cross-Cumulant. 

similarly the third-order cross cumulant is the third moment but  the fourth-

order cumulant differs from the fourth moment. In general  the higher-order 

moments correspond to correlation used in the  second-order statistics and 

cumulants are the  higher-order counterparts of co variances. Cumulants can 

always be expressed as the sum of products of moments, thus they contain the 

same statistical information as moments.  

 Earlier, EVD was used to whiten the data. This means that the 

original data was multiplied by a matrix V so that the resultant data vector‟s 

second- order correlation (i.e. cross-correlation or cross-covariance) was zero. 

This results in an identity covariance matrix. Similarly one can use the fourth-

order Cumulant tensor to make the fourth order Cumulant zero or at least as 

small as possible. This type of (approximate) higher order decorrelation gives 

the current class of method for ICA estimation. 

2.6.2 Cumulant Tensors 

 As shown in Equation (2.48) that fourth-order Cumulant Cum 

(xi,xj,xk,xl) where each index goes from 1 to n, is a four dimensional matrix. 

All the fourth-order cumulants of linear combination of xi can be obtained as 

linear combinations of the cumulants of xi. The fourth-order Cumulant, i.e., 
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kurtosis of a linear combination (e.g., output of a neuron) is given by the 

Equation (2.49). 
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 Hence fourth order Cumulant contains all the fourth-order 

information of the data while covariance contains all the second –order 

information of the data. 

 Cumulant tensor is a linear operator defined by the fourth-order 

Cumulant ),,,(
kkji

XXXXCum . The transformation using Cumulant tensor is 

in the space of nxn matrices. The space of such matrices is a linear space of 

dimension nxn. The basic property of tensor is that its components transform 

under a rotation of coordinate axes so as to keep its geometrical or physical 

meaning invariant. The i,j-th element of the matrix given by the 

transformation, say nij, is defined by the Equation (2.50). 

 

kl

lkjiklij
xxxxcummtMFT ),,,()( nlkji  ,,,1    (2.50) 

where 
kl

m are the elements of the matrix M that has been transformed. The 

Cumulant matrix F(M) may be seen as linear combination of parallel 

Cumulant slices with the entries of M as coefficients. 

2.6.3 Eigenmatrices of Cumulant Tensors  

 For a d-dimensional random vector x with fourth-order cumulants, 

there exists d
2
 real numbers 2,.....,,

21 d
  called eigenvalues and d

2 

matrices M1, M2,…., Md
2
 called eigen matrices such that )(

r
MF  is given by 

the Equation (2.51). 
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rrr

MMF )(            (2.51)     

 r = 1, 2, …………, d
2
. 

 To check the structure of eigenvalues and eigen matrices of a 

standard ICA model, consider whitened data vector z given in  

Equation (2.52) 

 sWVAsVxz
T

           (2.52) 

where W
T
 is whitened mixing matrix. The Cumulant tensor of z has special 

structure that can be seen in EVD of z. Every matrix of the form as in 

Equation (2.53). 

 T

mm
WWM             (2.53) 

for m = 1, 2, …. , n is an eigen matrix. The vector Wm is one of the rows of 

W
T
. To check the validation of (2.53), substitute (2.53) in (2.50) which gives 

the Equation (2.54). 
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 Since si‟s are independent, hence only those cumulants where a = b 

= c = d are non-zero, then Equation (2.54) becomes the Equation (2.55). 
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 Since rows of W are orthogonal and of unit length 

then, 

k

maakmk
WW   i.e., it will be unity only if m = a and zero otherwise. 

Likewise for the index of l,  

l

maakmk
WW  . Hence Equation (2.55) can be 

evaluated first by taking sum over k and then over l which gives the  

Equation (2.56).  
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 Hence the matrices of the form of Equation (2.53) give the form of  

Equation (2.51) and it proves that they are the eigen matrices of the tensor 

and the eigen matrices of the Cumulant tensor leading to the independent 

components. The spectrum of F(M) is made of n(n-1) zero eigenvalues and n 

eigenvalues equal to the kurtosis of the independent components. These n 

eigenvalues and corresponding eigen matrices are called significant eigen 

pairs of F(M). 

2.7 IMPROVED JADE ALGORITHM (IJADE) 

 The JADE algorithm uses significant eigen pairs of the cumulant 

tensor F(M) to find out the estimated values of independent components. In 

this IJADE algorithm, the tensor eigen value decomposition is considered as 

more of a preprocessing step. Eigen value decomposition can also be viewed 

as diagonalization. The idea is to diagonalize F(M) for any M using the 

matrix W. In other words, WF(M)W
T
 is diagonal. This is because the matrix 

F consists of a linear combination of terms of the form wiwi,
T
 assuming that 

the ICA model holds. Hence the goal is to take a set of significant eigen 

matrices, Mi, and try to make the matrices WF(M)W
T
 as diagonal as possible. 
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They might not be made exactly diagonal since the model doesn‟t hold 

exactly because of some sampling errors. 

 Let Q = WF(M)W
T
 , then the diagonality of Q can be measured, 

for example, as the sum of the squares of the off-diagonal elements 
 lk

kl

q 2 . 

Since an orthogonal matrix W does not change the total sum of the squares of 

the matrix, minimization of the sum of the off-diagonal elements is equivalent 

to the maximization of the sum of the square of diagonal elements of the 

Equation (2.57). 
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 Maximization of JJADE is the one method of joint approximate 

diagonalization of the F(Mi). 

 Two of the main steps in the JADE algorithm are used to find the 

significant eigen pairs of the cumulant tensor {λ r, M r |1 ≤ r ≤ n}, and to 

jointly diagonalize the JADE criterion JJADE (W). These two steps that lead to 

the JADE algorithm are discussed next. 

2.7.1 Significant Eigen Pairs 

 The significant eigen pairs of Cumulant tensor can be found using a 

classic stacking-unstacking device: the relation T=F(M) is put in a vector-

matrix form MFT
~~~

 by mapping the nxn matrices T and M into n
2
x1 vectors 

T
~

and M
~

 respectively and fourth-order Cumulant matrix with dimensions 

nxnxnxn into an n
2
xn

2
 matrix F

~
. The simplest mapping can be defined as in 

Equation (2.58). 
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where 1 ≤ i, j, k, l≤ n , a = i+(j-1)n , and  b = k+(l-1)d. Matrix F
~

can easily be 

checked to be a hermitian matrix with n
2
 real eigenvalues λ1,λ2,............., 

λn
2
and corresponding n

2
 eigenvectors. The unstacking of these eigenvectors 

yield n
2 

eigen matrices M1,M2 ,..............., Mn
2
 . Out of these n

2
 eigenvalues, 

n(n-1) will be zero (or very close to zero), rest will be the significant 

eigenvalues and the corresponding Eigen matrices will be the significant 

eigen matrices. 

2.7.2 Extended Jacobi Method for Joint Diagonalization 

 The famous Jacobi eigenvalues algorithm can be extended to 

diagonalize any number of commuting matrices simultaneously through 

unitary (or orthonormal, if real) matrices. It consists of maximizing the 

diagonalization criterion, say as given by Equation (2.57), by successive 

Givens rotations to minimize the off-diagonal elements. 

 Let C={Ck |k= 1,K} be the set of K normal commuting matrices, 

each of dimension nxn. The off-diagonal terms in C can be set to zero by 

minimizing the composite objective function in Equation (2.59),  

 
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k
UUCoffO
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)(           (2.59) 

by a unitary matrix U. The extended Jacobi technique for simultaneous 

diagonalization constructs U as a product of plane Givens rotations globally 

applied to all of the matrices in C. Thus the final value of U can be written as 

in Equation (2.60). 

 U=R1R2...........Rq                                                      (2.60) 
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where Rq is the rotation matrix corresponding to the q-th sweep. A sweep is 

defined as a one complete iteration consisting of rotation matrices 

corresponding to each off-diagonal element to be eliminated. Hence each 

sweep can be written as Equation (2.61). 
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 The rotation matrices Rij
q
 can be given by nxn identity matrices 

except for the Equation (2.62) elements, 
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where θ is the angle that the input symmetric matrices are rotated to make the 

(i,j)-th element of all the matrices as close to zero as possible (i ≠ j).  

 To find the rotation angle θ, first a matrix h(C) is defined as in the 

Equation (2.63).  
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 From h(C) a symmetric matrix with dimensions 2x2 can be formed 

as in Equation (2.64),  

 G=h(C)
T
h(C)           (2.64) 

 Matrix G can be utilized to calculate the Jacobi angles (rotation 

angles) θ in closed form using the following theorem: 
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 Under constraint| cosθ|
2
+| sinθ|

2
=1, the objective function as given 

in Equation (2.59) is minimized using terms in Equation (2.65). 
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where [x, y]
T 

is any eigenvector associated to the largest eigenvalue of G. 

 Rotation angle θ can either calculated from Equation (2.65) or 

alternatively by using the following relation in Equation (2.66). 
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 Figure 2.3 gives schematic illustration of JADE process. 

 A summary of JADE algorithm is given as follows: 

1. Preprocess input data matrix x to get centered and whitened 

data matrix z 

2. Calculate fourth-order cross-cumulants of z 

3. Unstack the fourth-order cross-cumulant of z into an n
2
xn

2
 

matrix
ab

F
~

as given in Eqn.(2.58) 

4. Find the n most significant eigen pairs of 
ab

F
~

,{ λr, Mr | 1 ≤ r 

≤n} 

5. Use extended Jacobi method to jointly diagonalize λr Mr. The 

orthogonal matrix that  approximately jointly diagonalize λr 

Mr will be the estimated value of the whitened  mixing matrix 

VA, using the Equation (2.67). 

       est(VA)= U=R1R2……………Rq          (2.67) 
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 The criteria of convergence, i.e. the last sweep will be the one with 

all q

ij
R  yielding almost identity matrices. This means that the rotation angle 

2

)(cos
1

x


  is always close to zero for all the rotation matrices in the last 

sweep thus not changing the unitary matrix in Equation (2.67) 

 

 

Figure 2.3 Diagrams to Illustrate the Operation of JADE 

 The operation of JADE is outlined in the following: 

1. The covariance matrix (
x

R̂ ) of the mixtures is obtained. This 

operation is based on the assumption that the signal source (S) 

have been normalized to the unity variance so as to ensure 

their amplitude information is contained in the matrix A. this 

enables (
x

R̂ )to expressed as (
x

R̂ )=AA
H
 .where A

H 
is 

Hermitian matrix of A. The whitening matrix 
x

Q̂  is computed 

by considering the whitening condition I= H

xxx
QRQ ˆˆˆ .Replacing 

(
x

R̂ ) gives H

x

H

x
QAAQI ˆˆ ,where I is the identity matrix. This 

implies that AQ
x

ˆ  is a unitary matrix (V) and therefore A can 

be factorized as VQA
H

x

ˆ .   

2. The mixtures are then whitened according to XQZ
x

ˆˆ  .The 

whitened matrix ( Ẑ ) obeys the model ASQZ
x

ˆˆ  .Substituting 

for A gives VSVSQQZ
H

xx
 ˆˆˆ .In order to determine V, the 

fourth order cumulants of whitened mixtures are computed 

(Jutten and Karhunen 2004). Their n most significant 
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A 

Whitening 
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x
Q
~

 

 

Unitary Matrix  

V 

 

X Y U Source Signal 
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eigenvalues () and their corresponding eigen matrices (Mi) 

are determined. An estimate of the unitary matrix (V) is 

obtained by maximizing the criteria N= iMi by means of joint 

diagonalization. If N cannot be diagonalized, the 

maximization of the criteria defines a „joint approximate 

diagonalization‟. 

3. An estimate of unmixing matrix )ˆ(W can be obtained by 

VQW x
ˆˆ  . 

2.8 INFOMAX AND EXTENDED INFOMAX ALGORITHM 

 The Infomax algorithm is proposed by Bell and Sejnowski  

(Lee and Sejnowski 1997).The Infomax method uses a gradient-based 

algorithm which leads to low complexity in terms of implementation. 

 The basic idea of the Infomax principle is to match the slope of the 

nonlinear transfer function of the elementary processing unit (e.g., neuron) in 

a network with the input Probability Density Function (PDF). The blind source 

Infomax nonlinear information maximization algorithm performs on-line 

stochastic gradient ascent in the Mutual Information (MI) between outputs and 

inputs of a neural-like network. Maximizing the information transfer in a 

nonlinear Neural Network (NN) minimizes the MI among the outputs when 

optimization is done over both the synaptic weights and the nonlinear transfer 

function. By minimizing the MI between its outputs, the network factorizes the 

input into independent components (James and Hesse 2005) 

 This chapter begins with an explanation of mutual information 

estimation and its role in component analysis followed by a comprehensive 

discussion of Infomax and Extended Infomax methods and finally some of 

the pros and cons of these methods are discussed.  
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2.8.1 Mutual Information 

 Mutual information is a natural measure of dependency between 

random variables i.e. it is a measure of the information that a member of a set 

of random variables has on the other random variable in the set. If y is a        

n-dimensional random variable and py(η) its probability density function, then 

vector y has mutually independent components, if and only if py(η) can be 

written as in Equation (2.68). 

 )()......()()(
21

21
nyyyy

n

pppp            (2.68) 

 A natural way of checking whether y has ICs is to measure a 

distance between both sides of the above Equation (2.68) is given as  

Equation (2.69). 
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the average mutual information of y as given by the Equation ( 2.70) 
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 The average mutual information vanishes if and only if the 

variables are mutually independent and are otherwise strictly positive.  

2.8.2 Mutual Information – ICA Criterion 

 ICA essentially consists of finding a transformation of the 

observation vector X into a vector Y whose components are mutually 

independent. This can be achieved in several ways, but a natural one is to 

choose a measure of the mutual dependence of the components Yi, and then to 

optimize the analysis system W, so that it minimizes this dependence 
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measure. There are several sensible measures of mutual dependence, but one 

that is generally considered as being among the best is Shannon‟s MI, defined 

as in Equation (2.71). 

 )()()( YHYHYI
i
           (2.71)  

where H denotes Shannon‟s entropy, for discrete variables, or Shannon‟s 

differential entropy is given by the Equation (2.72). 

  dxxpxpXH )(log)()(          (2.72) 

for continuous variables, p(x) being the probability density of the random 

variable X The differential entropy of a multidimensional random variable, 

such as H(Y), is defined in a similar way, with the single integral replaced 

with a multiple integral extending over the whole domain of Y. 

 The mutual information I(Y) measures the amount of information 

that is shared by the components of Y. It is always non-negative, and is zero 

only if the components of Y are mutually independent, i.e., if the  

Equation (2.73) is true. 

 

i

i
YPYP )()(            (2.73) 

 I(Y) is Equal to the Kullback-Leibler divergence between ∏i p (Yi) 

(the joint density that the components Yi would have if they were independent 

but had the same marginal distributions) and the actual joint density p(Y). For 

this reason, I(Y) is generally considered one of the best measures of 

dependence of the components of Y, because it is based on Shannon‟s 

concepts of entropy and mutual information, which probably are the best 

concepts of such quantities in most situations. It has also been used by several 



63 

 

authors as their choice of dependence measure within the nonlinear ICA 

context 

 The mutual information has another important property that will be 

useful in this context. Assume that  one applying transformations )(
iii

YZ  , 

resulting in new random variables Zi, and these transformations are all 

continuous and monotonic (and thus also invertible). Then, it can be easily 

shown that I (Z) = I(Y). This property has quite a pleasant intuitive meaning: 

Inspite of not mixing the components Yi and have made only invertible 

transformations on them, the information that they share doesn‟t change. 

2.9 INFOMAX METHOD 

 The Infomax method has been proposed for performing linear ICA 

based on a principle of maximum information preservation. However, it can 

also be seen as a maximum likelihood method, or as a method based on the 

minimization of mutual information. Infomax uses a network whose structure 

is depicted in Figure 2.4 (the figure shows the case of two components; 

extension to a larger number of components is straightforward). W is a linear 

block, yielding the Equation (2.74). 

 Y=WX             (2.74) 

 This block performs a product by a square matrix (Designate both 

the block and the matrix by the same letter since this will cause no 

confusion). After optimization, the components of Y are expected to be as 

independent from one another as possible. Blocks
i

 , which are being used 

only during the optimization phase, are auxiliary. Each of them implements a 

nonlinear function (Shall also designate by
i

 ). These functions must be 

increasing, with values in [0; 1]. The optimization of W is done by 

maximizing the output entropy, H (Z).  
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Figure 2.4 Structure of the Infomax ICA System 

 Since each zi is related to the corresponding yi by an invertible 

transformation, that is )()( ZIYI  . Assume that choosing for each 

nonlinearity yi, the Cumulative Probability Function (CPF) of the 

corresponding component yi. Then zi will have a uniform distribution in [0; 1] 

and H (zi) = 0. Consequently, from the relation )()( ZIYI   to get the 

Equation (2.75)    

 )()( ZIYI   

     )()()( ZHZHZH
i

          (2.75) 

 Maximization of the output entropy H (z) will therefore be 

equivalent to the minimization of I(y), which is the mutual information of the 

estimated components. Infomax can therefore be viewed as minimizing this 

mutual information, with an apriority choice of the estimated distributions of 

the components that can be performed through the choice of the y 

nonlinearities (James and Hesse 2005). These should approximate the CPFs 

of the actual components as closely as possible. However, as mentioned 

above, linear ICA is a rather constrained problem, and therefore Infomax 

usually performs well even if the output nonlinearities are only crude 

approximations to these cumulative functions. For example, it is known that 

logistic sigmoid can be used as nonlinearities for most unskewed, 

supergaussian distributions (Bell and Sejnowski 1995)  
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2.9.1 Infomax Algorithm 

 A simple case of a one-input one-output system is considered to 

derive the ICA algorithm. The general multi-input multi-output system is 

similarly derived with n-dimensional matrices of vector-valued random 

variables in place of the scalar valued functions. 

 Consider a scalar-valued function x with a Gaussian pdf fx(x) that 

passes through a transformation function y = g(x) to produce the output with 

pdf fy(y) .This is analogous to matrix operation in Equation (2.76). 

 Y = WX            (2.76) 

 The transformation function y to be the logistic sigmoid function is 

given in Equation (2.77).  
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

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1
)(  ,    

0
WWu

x
           (2.77) 

where w = slope of y (also called the weight), w0 = bias weight to align the 

high density parts of the input with y.  

 As discussed in previous sections, an increase in the joint entropy 

of the output, H(y), results in decrease in its mutual information. The entropy 

of the output is maximized by aligning the high density parts of pdf of x with 

the high sloping parts of the function g(x) (hence the need for the biasing 

weight w0).The function g(x) is monotonically increasing (i.e. has a unique 

inverse) and thus the pdf of the output fy(y) can be written as a function of the 

pdf of the input fx(x) as in Equation (2.78). 
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)(            (2.78) 
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 The entropy of the output is given by the Equation (2.79). 
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       (2.79) 

 Substituting Equation (2.78) into Equation (2.79) gives the 

Equation (2.80). 
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 H(y) of Equation (2.80) has to be maximized for statistical 

independence. Looking at the right hand side, can see that the function x is 

fixed and the variable y can be changed. Or more preciously, the slope, w, of 

y. Hence the partial derivative of H(y) with respect to w is taken. The second 

term in Equation (2.80) does not depend on w and therefore can be ignored. 

The change in slope, ∆w, necessary for maximum change in entropy is given 

by the Equation (2.81). 
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 Derivative can be computed from the Equation (2.81), but the 

expectation of the natural logarithm term cannot be computed. Hence, Bell 

made the stochastic gradient approximation:  
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lnln , to get rid of the expectation. The Equation (2.81) is 

simplified to the Equation (2.82) as follows: 
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 The above Equation (2.82) is the general form of the weight change 

rule for any transformation function y. For the logistic sigmoid function 

Equation (2.77), the terms in Equation (2.82) are evaluated as in  

Equation (2.83) and Equation (2.84). 
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 Substituting the above Equation (2.83) and Equation (2.84) into 

Equation (2.82) gives the weight update rule for y = logistic sigmoid function 

as in Equation (2.85). 

 xyww )21(
1


           (2.85) 

 Similarly, the bias weight update, ∆w0, can be evaluated with the 

Equation (2.86). 

 yw 21
0

            (2.86) 

 Bell and Sejnowski‟s adaptive learning algorithm (Lee and 

Sejnowski 1997) blindly separates mixtures, X of independent sources and S 

using information maximization (Infomax) is described by the following 

steps: 

i) The demixing matrix W is initialized to an identity matrix. 

ii) The signal sources are estimated by X = AS→ S=WX and they 

are transformed by a nonlinear transfer function. For a 

sigmoidal transfer function, the resulting signals Y are 

expressed as in Equation (2.87).    
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
          (2.87) 

where wo  is a vector of bias weights which is initialized to a 

zero vector 

iii) The nonlinearly transformed signals Y are processed by a 

learning rule which maximizes their joint entropy that can 

approximately minimize their mutual information. This is 

achieved by changing the weight matrix by an amount ΔW, 

where ΔW is given in Equation (2.88). 

TT
xyWW )21(][

1


          (2.88) 

The change in the bias weight is expressed by Δwo = 1− 2y   

iv) The ICA algorithm is trained by repeating the steps (ii) and 

(iii). After each iteration, the demixing matrix W is updated by 

ΔW until the convergence is achieved. 

 The algorithm stops training when the rate of change falls below a 

predefined small value, e.g1.0×10−6. The rate of change is computed by 

squaring the difference between corresponding elements of the demixing 

matrix before and after iteration and then summing the values (Lee 1997). 

2.10 EXTENDED INFOMAX METHOD 

 The algorithm of Bell and Sejnowski which uses a sigmoidal 

activation function is specifically suited to separate signals with super-

Gaussian distribution (i.e. positive kurtosis). Lee and Sejnowski (Sarah Hosni 

and Mahmoud Gadallah 2007) proposed an extension of Infomax ICA that is 

able to separate with sub and as well as super Gaussian distribution. This 

preserves the ICA architecture of Infomax algorithm. But it uses a learning 

rule derived by Girolami and Fyfe. It determines the sign changes (positive to 

negative and vice versa) required by the algorithm to handle both sub and 

super Gaussian distributions.  
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2.10.1 Deriving a Learning Rule to Separate Sub- and Supergaussian 

Sources  

 The objective of the Extended Infomax algorithm is to provide a 

simple learning rule with a fixed nonlinearity that can separate sources with a 

variety of distributions. One way of generalizing the learning rule to sources 

with either sub- or supergaussian distributions is to approximate the estimated 

p.d.f. with an Edge worth expansion or Gram-Charlier expansion (Girolami 

and Fyfe 1997). Girolami in 1997 used a parametric density estimate to derive 

the same learning rule without any approximations, as shown below. A 

symmetric strictly subgaussian density can be modeled using a symmetrical 

form of the Pearson mixture model as shown in Equation (2.89). 

 )),(),((
2

1
)(

22
  NNup         (2.89) 

where ),((
2

N  is the normal density with mean   and variance 2
 . The 

density )(up  for 1
2
 with varying ]2.....0[ . For )(,0 up is a Gaussian 

model whereas for 5.1
i

 , for example, the )(up is clearly bimodal. The 

kurtosis k4 (normalized fourth-order cumulant) of )(up  is given by  

Equation (2.90) 
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where ci is the i th-order cumulant. Depending on the values of  and 2
 the 

kurtosis lies between -2 and 0. So Equation (2.89) defines a strictly 

subgaussian symmetric density when  > 0. Defining 
2




a  and applying  

Equation (2.89), )(
0

uW  can be written as in Equation (2.91).   
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 Using the definition of the hyperbolic tangent, Equation (2.91) can 

be written as Equation (2.92). 

 )tanh()(
222

u
uu

u





  .         (2.92) 

 Setting 1 and 1
2
 , Eqn.(2.92) reduces to Equation (2.93). 

 )tanh()( uuu            (2.93) 

  The learning rule for strictly subgaussian sources is given from 

Equation (2.85) and Equation (2.86) that can be written as Equation (2.94) 

 WuuuuIW
TT

])tanh([          (2.94) 

 In the case of unimodal supergaussian sources, the density model is 

given in Equation (2.95) 

 )(sec)()(
2

uhupup
G

           (2.95) 

where )1,0()( Nup
G

  is a zero-mean Gaussian density with unit variance. 

Figure 6.4 shows the density model for )(up . The nonlinearity )(u  can be 

written as Equation (2.96). 
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 The learning rule for supergaussian sources from Equation (2.85) 

and Equation (2.86) is given in Equation (2.97) as 

 WuuuuIW
TT

])tanh([           (2.97) 

 The difference between the supergaussian learning rule in  

Equation (2.98) and the subgaussian learning rule in Equation (2.97) is the 

sign before the tanh function: 

 WuuuuIW
TT

])tanh([   : Supergaussian 

 WuuuuIW
TT

])tanh([    : Supergaussian      (2.98) 

 Switching Between Nonlinearities The switching between the sub 

and supergaussian learning rule is 

 WuuuuKIW
TT

])tanh([  . Ki=1 : Supergaussian 

 Ki=-1 : Subgaussian. 

2.11 EYEBLINK COMPONENT IDENTIFICATION 

 After ICA, Independent sources related to eye blinks must be 

identified from the independent components of EEG. The scalp topography of 

each component provides evidence of its physiological origin. An eye blink 

component‟s scalp map has a strong far-frontal projection. A simple rule for 

eye blink components identification was developed based on this fact and 

these components must be removed from the components matrix sj(t) in order 

to reconstruct a clean EEG segment. 
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  Denoting the j
th

 column of W
-1

 by W
-1

j it represents the intensity 

distribution at each electrode (i.e. the scalp map) of the corresponding 

component sj(t), where j = 1,..,7. w
-1

ij denote the i
th 

element in W
-1

j where i = 

1,..,7 as the number of sources is equal to the number of channels. Then the 

eye blink component identification rule is as given in Equation (2.99). 

 If   max (W
-1

j) = w
-1

7j 

 Then s‟j (t) = 0 

 W
-1

j = 0 

 Else s‟j (t) = ŝj (t),              (2.99) 

 Max (W
-1

j) = w
-1

7j means that the ocular activity contributes the 

most to this component activity regardless of the sign of that activity. By 

applying this artifact identification method for independent components, the 

EOG is completely removed from EEG.  

2.11.1 EEG Reconstruction  

 After identifying and removing artifactual components, EEG data 

are reconstructed using the new independent components matrix as given in 

Equation (2.100). 

 x‟ (t) = W
-1

 s‟ (t)         (2.100) 

where s‟(t) is the matrix of the recovered sources s(t) with rows representing 

artifactual sources set to zero and x‟(t) is the corrected EEG segment .  

2.12 RESULTS  

 The data used here were recorded using six recording channels 

(electrodes) from four subjects performing the five mental tasks. The 

recordings of mental tasks were conducted for several 10 seconds trials and 
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trials were made in two sessions. Each session was conducted on a separate 

day. The data are available online at (http://www.cs.colostate.edu/~anderson.) 

 An Electro-Cap named elastic electrode cap was used to record 

from positions C3, C4, P3, P4, O1, and O2, shown in previous chapter and 

defined by the 10-20 system of electrode (sensor) placement. Eye blinks were 

detected by means of a separate channel of data (EOG channel). The mental 

tasks were: 

(1) Baseline task: The subjects were asked to relax as much as 

possible. 

(2)  Letter task: The subjects were instructed to mentally 

compose a letter to a friend or relative without vocalizing. 

(3) Math task: The subjects were given nontrivial multiplication 

problems, such as 49 times 78. 

(4) Visualized counting: The subjects were asked to imagine a 

blackboard and to visualize numbers being written on the 

board sequentially 

(5  Geometric object rotation: The subjects were asked to 

visualize a particular three dimensional block figure that is 

being rotated about an axis. Data was recorded for 10 seconds 

during each task and each task was repeated five times per 

session. 

Data were recorded for 10 seconds during each task and each task was 

repeated five times per session. The subjects  who attended  two sessions 

were recorded on separate weeks, resulting in a total of ten trials for each 

task. With a 250 Hz sampling rate, each 10 second trial produces 2,500 
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samples per channel. Figure 2.5 shows one subject's EEG data obtained from 

doing math tasks twice.   
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(a) Trial  1                          (b) Trial  2 

Figure 2.5 EEG Recording of a Subject during Mental Multiplication 

2.12.1 Results of Fast ICA Algorithm 

 Parameters: 

 Nonlinearity:  log(cosh(y)) 

 No. of iterations: 100 

 Max. weight change:  10e-300 

 Figure 2.6 shows the independent components obtained using the 

Fast ICA algorithm from the EEG data mixed with EOG which is shown 

Figure 2.5. In Figure 2.5, the EOG recording appears in all channels of 

original EEG data. But from Figure 2.6, it can be found that the EOG artifact 

is concentrated in component 7(order from top to bottom) and does not 

appears in other independent components. 

 Execution time in seconds: Trial 1:  1.59,   Trial 2: 1.61 
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(a) Trial 1                      (b) Trial 2 

Figure 2.6 Independent Components Obtained using Fast ICA 

2.12.2 Results of IJADE Algorithm 

 No adjustable parameters. 

 Figure 2.7 shows the independent components obtained using the 

IJADE algorithm for the EEG data of Figure 2.5. 
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    (a) Trial 1     (b) Trial 2 

Figure 2.7 Independent Components Obtained using IJADE 

 Execution time in seconds: Trial1: 0.99, Trial 2:  1.01 



76 

 

2.12.3 Results of Infomax:  

 Parameters: learning rate= 0.1; 

 Max. Change in weight =1e-3 

 Transformation function =logistic sigmoid =
u

e


1

1

 

 Number of iterations: 512 

 Bias weight =0 

 Initial weight =Identity Matrix 

 Figure 2.8 shows the independent components obtained using the 

Infomax algorithm for the EEG data of Figure 2.5. 
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(a) Trial 1                                                         (b) Trial 2 

Figure 2.8 Independent Components Obtained using Infomax 

 Execution time in seconds: Trial 1: 2.20, Trial 2: 2.52 
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2.12.4 Results of Extended Infomax  

 Parameters:     Min. Weight-change: 1e-3 

                 Number of iterations=512  

 Signs: -1: subgaussian  

         1: supergaussian 

 Initial weight= Identity matrix 

 Nonlinearity = tanh(u) 

 Bias =0 

 Learning rate =0.1 

 Figure 2.9 shows the independent components obtained using the 

Extended Infomax algorithm for the EEG data of Figure 2.5. 
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(a)  Trial 1     (b) Trial 2 

Figure 2.9 Independent Components Obtained using Extended Infomax 

 Execution time in seconds: Trial 1: 3.07,  Trial 2: 3.03. 

 



78 

 

2.12.5 Performance Comparisons of Algorithms 

 Computation Time: The computation time i.e., the time 

taken by algorithm to separate the EEG signal is measured. 

For comparison of algorithms mental multiplication task EEG 

which is measured for five Trial s is used. The computation 

time in seconds is tabulated in Table 2.1. 

 Entropy: Entropy of original mental multiplication EEG 

signals of five Trial s is given in Table 2.2. Entropy of the 

separated signal by different ICA algorithms is given in  

Table 2.3. 

Table 2.1 Computation Time for ICA Algorithms in Seconds 

                 

Algorithm 

Task  

(multiplication)  

Fast 

ICA 
IJADE Infomax 

Extended 

Infomax 

Trial 1 1.59 0.99 2.20 3.07 

Trial 2 1.61 1.01 2.52 3.03 

Trial 3 1.78 1.12 2.71 3.44 

Trial 4 1.70 1.01 2.29 3.14 

Trial 5 1.50 0.98 2.43 3.32 

 

 Figure 2.10 shows the computation time curve for four ICA 

Algorithms 
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Figure 2.10 Computation Time curve for ICA Algorithms 

Table 2.2 Entropy of Original EEG  

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

1.646 1.664 1.759 1.787 1.705 

 

Table 2.3 Entropy of EEG after Removal of EOG  

               

      Algorithm 

 

Multiplication  

Fast 

ICA 
IJADE Infomax 

Extended 

Infomax 

 

Trial 1 4.409 4.468 4.001 2.996 

Trial 2 3.781 4.570 3.518 2.858 

Trial 3 3.955 4.124 3.878 2.899 

Trial 4 4.293 4.222 3.650 3.139 

Trial 5 4.092 4.335 3.91 3.050 
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 Figure 2.11 Shows the Entropy curve for EEG after removal of 

EOG. 

 

Figure 2.11 Entropy curve for EEG after removal of EOG 

 SIGNAL-TO-NOISE RATIO 

  Signal to Noise ratio is a measure used in science and engineering 

that compares the level of a desired signal to the level of background noise. It 

is defined as the ratio of signal power to the noise power.  

 Signal to Noise ratio of the four ICA methods are tabulated in 

Table 2.4. Figure 2.12 shows the Signal to Noise ratio curve for four ICA 

Methods. 
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Table 2.4 Signal to Noise Ratio in dB 

         

Trial s 

Corrupted 

signal 

SNR in dB 

SNR in db Using ICA Methods 

Fast 

ICA 
IJADE Infomax 

Extended 

infomax 

Trial 1 10.1040 15.7810 17.4210 14.8010 15.7210 

Trial 2 11.1020 16.1010 18.1010 15.4210 15.5220 

Trial 3 12.3010 17.7020 18.7020 15.4840 16.7220 

Trial 4 12.9210 18.3030 19.3030 16.7030 16.7840 

Trial 5 13.1020 17.840 19.8040 16.4010 17.1340 

 

 

Figure 2.12 Signal to Noise ratio curve for ICA Methods 

 The five trials result shows the comparative evaluation of signal to 

noise ratio. Compare with corrupted signal SNR the independent component t 

analysis methods SNR value is very high. Among these methods JADE only 

give the better result in terms of correlation factor and computation time also. 
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2.13 SUMMARY 

 In this chapter, the basic principle behind the independent 

component analysis technique is discussed. The contrast functions for different 

routes to independence are clearly depicted. Different ICA algorithms are 

briefly illustrated and are critically examined with special reference to their 

algorithmic properties. The ambiguities present in these algorithms are also 

presented. EEG signals will maintain the similarity in their patterns when 

subject is performing the mental task. The traditional methods applied for 

remove artifacts can only compromise between eliminating artifacts and 

protecting useful signals so that the result is not very satisfying.  

 However, ICA method can protect the useful signals as well as 

obviously weaken even entirely remove the artifacts in multi-channel EEG 

signals, this characteristic of ICA is the key to get stable EEG patterns which 

can be used for mental task classification. Two functions which are used for 

maximization of non-gaussianity by the using Fast ICA have been discussed. 

Negentropy is proposed as best estimation functions for estimating 

independent components from mixed data. Detailed description of 

mathematical derivation of Fast ICA has been examined for estimation of 

several independent components parallely. Different non quadratic functions 

are introduced for finding unmixing matrix by the use of Fast ICA. Improve 

JADE Algorithm is explained in this chapter. The explanation of high-order 

cumulants followed by a discussion of cumulant tensors also given in this 

chapter for IJADE. The role of cumulant tensors in IJADE is explained. The 

IJADE Algorithm uses significant eigen pairs of the cumulant tensor F(M) to 

find out the estimated values of independent components. In this Improved 

JADE Algorithm, the tensor eigen value decomposition is considered as more 

of preprocessing step. The eigen value decomposition can also be viewed as 

diagonalization. IJADE provides better results among with four ICA 

algorithms in terms of their convergence speed, entropy and signal to Noise 

ratio. 
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CHAPTER 3 

ARTIFACTS REMOVAL FROM EEG USING NEURO 

FUZZY FILTER 

 

3.1 INTRODUCTION 

 In recent years, applications in the fields like image processing, 

pattern recognition, process control, forecasting, credit evaluation, medical 

diagnosis and so on have used hybrid fuzzy neural filter. Different fuzzy 

neural network architecture has been proposed for different applications. 

 Neuro-fuzzy systems are the combination of neural networks and 

fuzzy logic and so called  hybrid. These hybrid systems take the advantages 

of both the systems and have overcome the disadvantages of individual 

sytems (García et al 2008). Neural networks,  used alone have uncertainty but 

the combination of neuro-fuzzy has good expressiveness and uncertainty is 

reduced adapting  according to the changes in the environments. 

 Human expertise: Soft computing makes use of human 

expertise and frame if-then rules in fuzzy logic. The practical 

problems are solved with the help of the conventional 

knowledge representation. 

 Model-free learning: Neural networks and adaptive fuzzy 

inference system have the ability to construct models using 

only target system sample data. Deep study about the target 
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system enables to set up the initial model structure, but it is 

not compulsory.  

 Intensive computation: Neuro-fuzzy and soft computing 

make use of high speed number crunching computation to find 

rules or regularity in data sets rather than assuming about the 

background knowledge of the problem. 

 Fault tolerance: Like any other system,neural networks and 

fuzzy inference systems also have fault tolerance.  If there is 

any violation in the neural network or if the rules in fuzzy 

logic are violated it does not cease the system. The system 

continues to function because of its parallel and redundant 

architecture, but the performance of the system is reduced, 

that is the quality deteriorates. 

 Goal driven characteristics: Neuro-fuzzy mainly 

concentrates on the goal. The direction taken from the current 

state to the solution does not matter as long as the function is 

correctly pointing towards the goal. 

3.2 EXTRACTING KNOWLEDGE FROM EXISTING 

METHODS 

3.2.1 Armax Modeling Method 

 The basic assumption of ARMAX modeling is that EEG signal is a 

combination of EOG artifacts and the background EEG. ARMAX method 

provides estimation of EEG and the artifacts that background the EEG. Then 

the background EEG is estimated via estimation of ARMAX parameters. The 

background EEG is an uncorrelated white noise with zero mean according to 

this model. Propagation characteristics is the same for all frequencies of EOG 

(García  et al 2007). These assumptions are not completely true so they must 
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be relaxed. In order to do so the measured EEG is modeled as an ARMAX 

process described as in Equation (3.1) 
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  (3.1) 

where (p, q, r) is the model order. The coefficients of this model are estimated 

with the help of Recursive Extended Least Squares estimator. Then the 

background EEG is estimated by using the previous and the present values of 

yand u  

3.2.2 Disadvantages 

 The main disadvantage of the ARMAX method is that it needs 

more complicated calculations to eliminate the negative spike that appears at 

blinking time. This elimination can be handled only in higher orders of 

ARMAX. Model order estimation is necessary for a good  performance of 

ARMAX but it complicates the procedure. This problem is overcome by 

adaptive filtering method that does not need any calibration trial  or parameter 

estimation. Also in ARMAX model, it is difficult to interpret the values of the 

covariate coefficients. The ARMAX model structure includes disturbance 

dynamics. 

3.3 ADAPTIVE FILTERING METHOD 

 An adaptive filter is a very efficient filter in which the transfer 

function is adjusted according to an optimization algorithm driven by an error 

signal. It is basically a computational device and its function is to model the 

relationship between two signals in real time in an iterative manner. They are 

often realized with the help of a set of program instructions running on an 

arithmetical processing device such as a microprocessor or DSP chip, or a set 
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of logic operations implemented in a field-programmable gate array (FPGA) 

or  a semi-custom or custom VLSI integrated circuit.  

 However, any errors introduced by numerical precision effects in 

these implementations, the fundamental operation of an adaptive filter, can be 

characterized independent of the specific physical realization that it takes. 

Adaptive filters are mostly digital filters due to the complexity of the 

optimization algorithms. In contrast to this, a non-adaptive filter has a static 

transfer function. Adaptive filters are used where some parameters of the 

desired processing operation (for instance, the locations of reflective surfaces 

in a reverberant space) are not known in advance.  

 An adaptive filter is defined by four aspects: 

1. The signals that are being processed by the filter 

2. The structure that explains the function how the output signal 

of the filter is computed from its input signal 

3. The parameters within this structure that can be iteratively 

changed to alter the filters input-output relationship 

4. The adaptive algorithm that describes how the parameters are 

adjusted from one time instant to the next.  

 The adaptive filter uses feedback. The error signal is used as 

feedback to refine its transfer function to match the changing parameters. The 

number and type of parameters can be adjusted according to the adaptive 

filter structure. The adaptive algorithm can take many myriad forms but often 

used as optimization procedure that minimizes an error criterion that is useful 

for the task at hand. The general adaptive filtering problem and the 

mathematical notation for representing the form and operation of the adaptive 

filter in discuss this section. A simple derivation for the Least Mean Square 
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(LMS) algorithm, which is perhaps the most popular method for adjusting the 

coefficients of an adaptive filter, is given below and also some of its properties 

are discussed. 

 

 

 

 

 

 

Figure 3.1 Block diagram of adaptive filter 

3.3.1 Adaptive Filtering 

EEG signal and artifacts have overlapping spectra and the  

conventional filtering cannot be used to eliminate the artifacts. Because of 

this problem adaptive filters are opted which are based on the optimization 

theory. Adaptive filters are very flexible and can modify their properties 

according to  the selected features of the signals that are  being analyzed. 

Figure 3.2 illustrates the structure of basic adaptive filter. There is a primary 

signal d(n) and a secondary signal x(n). The linear filter H(z) produces an 

output y(n). The difference between y(n) and d(n)is the error e(n). 
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Figure 3.2 Structure of an adaptive filter 

3.3.2 Cancellation of Artifacts 

 The function of an adaptive filter is to change (adapt) the 

coefficients of the linear filter which in turn changes its frequency response, 

to generate a signal similar to the noise present in the signal that has to be 

filtered. The adaptive process reduces the cost function that is used to 

determine the filter coefficients. The coefficients are adjusted by adaptive 

filters to minimize the squared error between its output and a primary signal. 

In stationary conditions, the filter should converge to the Wiener solution. 

The converse is also true, that is in non-stationary circumstances, and the 

coefficients will change with time, according to the signal variation, thus 

forming an optimum filter. 

 In an adaptive filter, there are basically two processes: 

 The first process is filtering in which an output signal is the 

response of a digital filter. Generally FIR filters are used for 

this purpose because they are simple and stable. 

 The second process is the adaptive process in which the 

transfer function H(z) of the filter is adjusted according to an 

optimization algorithm (Widrow and Stearns 1985). The most 

commonly used optimization algorithm is Least Mean Square 

(LMS) algorithm. According to this algorithm, adaptation is 

e(n) 
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- 

Error 
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Output 

y (n) 
x(n) 

Secondary signal 
 H(Z) 

Linear filter 



89 

 

directed by the error signal which is the difference between 

the primary signal and the filter output.  

 The adaptive interference cancellation is a very efficient method to 

remove the artifacts from  the signals especially when the signals and 

interferences have overlapping spectra. In external electroencephalogram 

records and in impedance cardiographs this method is used prominently. 

Other applications in biomedical signals are removal of maternal ECG in fetal 

ECG records, detection of ventricular fibrillation and tachycardia, and 

cancellation of heart sound interference in tracheal sounds. 

 According to this scheme, the corrupted signal d(n) is the 

summation of the desired signal s(n) and noise n0(n), which is additive and 

not correlated with s(n). Likewise, the reference x(n) is uncorrelated with s(n) 

and correlated with n0(n). The reference x(n) is fed to the filter to produce an 

output y(n) that is a close estimate of the noise n0(n). 

 To accomplish the objectives of this research, arrangement of a 

cascade of three adaptive filters was made. The input d1(n) to the first stage is 

the EEG signal with artifacts (EEG + line-frequency + ECG+ EOG). The 

reference x1(n) in the first stage is a sine function generated with 50 or 60 Hz, 

depending on the type of the line. The optimum values of L and μ are 

determined by means of various tests. The order L of H1(z), H2(z) and H3(z) 

were found to be 128 and the coefficient convergence rates μ1, μ2 and μ3 

were 0.001. The output of H1(z) is y1 (n), which is an estimation of the line 

artifact present in the EEG. The error e1(n) is the difference between the 

corrupted signal d1(n) and the output of H1(z) , which is the EEG without line 

interference. The adaptive filters cascade form is shown in Figure 3.3. 

 Thus in the first stage line interference is eliminated. The e1 (n) 

error is fed as the corrupted input signal d2(n) to the second stage. Real or 

artificial ECG is given as the reference input x2(n) to the second stage. The 
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output of H2(z) is y2(n), which is the close estimate of the ECG artifact 

present in the EEG record. Signal y2(n) is subtracted from d2(n)and error e2(n) 

is produced. Thus line and ECG interference is removed from the EEG 

(Garces Correa et al 2007). Then, e2(n) is fed into the third stage as the signal 

d3(n). The reference input x3(n) of filter H3(z) is also a real or artificial EOG 

and its output is y3(n), which is a replica of the EOG artifacts present in the 

record. The difference between y3(n) and d3(n) gives error e3(n). It is the final 

output of the cascade filter, that is, the EEG without artifacts (all the artifacts 

are removed in the cascaded stages). 

 

       

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Adaptive filters cascade 
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 The input signal is the corrupted EEG. The three references are 

line-frequency, ECG, and EOG which are the artifacts present in EEG. The 

output e3(n) represents the final output which estimates the EEG record 

without the above mentioned artifacts. 

3.3.3 Methodology of Adaptive Filter 

 Figure 3.4 is the basic scheme of adaptive noise canceller  where 

the primary signal is called “corrupted signal” and the secondary is called 

“reference signal”. It is assumed that the corrupted signal d(n) is composed of  

the desired signal s(n) and noise signal n(n), which  is additive and not 

correlated with s(n).  Likewise, the reference signal x(n) is uncorrelated with 

s(n) and correlated with n(n). The reference x (n) feeds the filter to produce 

the output y(n) that is a close estimate of n(n). 

 

 

 

 

Figure 3.4 Adaptive noise canceller scheme 

 The structure of the FIR can be represented as in Equation (3.2). 
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where L is the order of the filter, x(n) is the secondary input signal, wk are the 

filter coefficients and y(n) is the filter output. 
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 The error signal e(n) is defined as the difference between the 

primary signal d(n) and the filter output y(n), that is  given in Equation  (3.3). 

 )()()( nyndne                                                                           (3.3) 

where y(n) is shown in Equation (3.4)   
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 The squared error is given in Equation  (3.5) 
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 The squared error expectation for N samples is given by  

Equation  (3.6) and Equation  (3.7) 
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where rdx(n) is the cross-correlation function between primary and secondary 

input signals and rxx(n) is the autocorrelation function of the secondary input 

(Amble 1987), that is given in Equation  (3.8) and Equation  (3.9). 
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  Adaptation process is used to minimize the squared error which 

describes the performance of the filter. To acheive this goal different 

optimization techniques can be used. Steepest descent method is used in this 

work (Sornmo et al 2005). 

The filter coefficient vector for each iteration k having information 

about the previous coefficients and gradient, multiplied by a constant can be 

calculated with the help of steepest descent method. It is given by in  

Equation (3.10) 
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where μ is a coefficient that the rate of adaptation. 

Deriving with respect to wk and replacing leads to,wk(n+1) in  

Equation (3.11), Equation (3.12), Equation  (3.13) and Equation  (4.14). 

 )(

)}({
)()1(

2

nw

ne
nwnw

k

kk




                  (3.11) 

 )(

)}({
)( 2)()1(

2

nw

ne
nenwnw

k

kk




                                               (3.12) 

 )(

})()({

)( 2)()1(
0

nw

knxwnd

nenwnw

k

L

K

k

kk










             (3.13) 

 Since d(n) and x(n) are independent with respect to wk, then, 
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Equation (3.14) is the final description of the algorithm that is used to 

compute  the filter coefficients as function of the signal error e(n) and the 

reference input signal  x(n). The coefficient μ is a constant that must be 
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chosen carefully for quick adaptation and must be chosen in such a way to 

maintain stability. μ must satisfy the following condition for the filter to be 

stable. It can be defined in Equation (3.15) 
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where L is the filter order and Pxx is the power of the input signal computed 

as, follows in Equation (3.16).  
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 Advantages of adaptive filters over conventional ones include 

preservation of components intrinsic to the EEG record. 

3.3.4 Advantages 

 The advantages of using a cascade of three filters instead of using a 

single adaptive filter to filter three signals are, 

a) It is simple to adapt the coefficients individually rather than 

doing it in a single step in a single filter. 

b) At each stage one artifact is removed from the corrupted 

signal; such separation (by artifact) may be useful in some 

applications where the removal of one artifact might be 

enough.  The advantages of adaptive filters over conventional 

ones include preservation. Conventional filters might destroy 

some details of sensitive EEG whereas in adaptive filters 

intrinsic components of EEG record are well preserved. 

Besides, they can adapt their coefficients to variations in heart 

frequency, abrupt changes in the line frequency (caused, say, 
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by ignition of electric devices) or modifications due to eye 

movements 

3.3.5 Limitation of Adaptive Filtering Method 

 The main problem in this work was the determination of L (filter 

order) and μ (convergence factor).These parameters are very important; L is 

necessary for the appropriate filtering, and μ is used to get an adequate 

adaptation. The μ value has to be selected carefully. The large values of μ 

lead to instability and the small value turns out to be inefficient and thus the 

adaptation is too slow. Multiple numbers of tests were carried out to 

determine the optimum value for these parameters. 

3.4 ARTIFICIAL NEURAL NETWORKS  

 An Artificial Neural Network is an information-processing 

algorithm that works based on the biological nervous systems such as the 

brain. The key element of this neural network is novel structure of the 

information processing system. It is composed of a large number of highly 

interconnected processing elements called neurons. They work together to 

solve specific problems.  Neural networks, like humans, learn by example. An 

Artificial Neural Network is application oriented, such as pattern recognition 

or data classification, through a learning process.  

3.4.1 Neural Networks  

 The computation on artificial neural networks has been motivated 

right from its inception by that of the human brain. The computation of 

human brain is entirely different from the conventional digital computer.  The 

brain is a highly complex, non-linear and parallel computer (information 

processing system). The networks has to organize its structural constituents, 
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known as neurons  to perform certain computations (e.g. pattern recognition, 

perception and motor control) many times faster than the fastest digital 

computer in existence today. 

 Artificial neural networks are biologically inspired.  The neural 

networks are processing elements capable of doing processing in parallel and 

distributed manner as in human brain. Various models are developed based on 

neuro-processing, each with a variation on parallel and distributed processing 

ideas.  A general framework has to be built in order to categorize the various 

models that are developed. 

 Artificial neural networks are a massive interconnection of simple 

computing cells referred to as “neurons” or “processing units”.  A neural 

network is a large parallel-distributed processor made up of simple processing 

units which has a new natural propensity for storing experiential knowledge 

and making it available for use. 

 It resembles the brain in two aspects: 

 The network gains knowledge from its environment through a 

process called  learning process. 

 Inter connection strengths, known as synaptic weights, are 

used to store the acquired knowledge. 

 A set of training data is used to train artificial neural network and 

they do not operate based upon a set of rules as in Expert Systems or based on 

fixed algorithms.  These networks feature a large parallel architecture that 

uses a neuron as the basic processing element. 
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3.4.2 Features of Neural Networks 

 Artificial Neural Networks comprises of elements that perform in a 

manner that is similar to the most elementary functions of the biological 

neuron.  These networks exhibit a surprising number of brain‟s 

characteristics.  They learn from experience, generalize from previous 

examples to new ones, and abstract essential characteristics from input 

containing irrelevant data. 

 Learning: Artificial neural network can change their behavior 

in response to the changes in the environment. Given a set of 

input, they self-adjust to produce suitable responses.  This 

behavior of self-adjustment is called “Learning”. 

 Generalization: After training the network response can be 

insensitive to small variations in its inputs.  This ability to see 

through noise and distortion in the pattern lies within its vital 

to pattern recognition in the real world environment. 

 Abstraction: The essence of a set of inputs can be abstracted 

by some types of neural networks.  For example, a network 

can be trained on a sequence of distorted versions of a 

character.  After sufficient training, application of such a 

distorted pattern will produce a perfectly formed character. In 

other words, it has learnt to produce something new and 

different that it has never seen before. 

 Non-Linearity: The processing elements or nodes used in 

networks are non-linear, typically analog.  Three types of non-

linearity are used 

 Head Limiter 

 Threshold logic elements and  
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 Sigmoid non-linearity   

3.4.3 Architecture of Artificial Neural Network 

 The way in which the neurons of a neural network are structured 

and how intimately linked with the learning algorithm is used to train the 

network.General neural networks can be classified into two types based on 

their architecture.   

3.4.3.1 Single-layer feed forward network 

 In a layered neural network the neurons are organized in the form 

of layers.  In this simplest form of a layered network, there is an input layer of 

source nodes that are mapped and projected onto an output layer of neurons 

(computation nodes), as shown in Figure 3.5. This type of network is strictly a 

feed forward or a cyclic type.  Such a network is called a single-layer network 

where the term “single-layer” refers to the output layer of computation nodes 

(neurons).  

 

 

 

 

 

Figure 3.5 Single-Layer Feed Forward Network 
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3.4.3.2 Multi-layer feed forward network 

 The multi-layer feed forward neural network distinguishes itself by 

the presence of one or more hidden layers whose computation nodes are 

correspondingly called hidden neurons or hidden units. Figure 3.6. represents 

the structure of multi-layer feed forward network. The hidden neuron is used 

to intervene between the external input and the network output in a some 

useful manner. The  addition of one or more hidden layers enables the 

network to extract higher-order statistics (Ali 2003).  When the size of the 

input layer is very large the ability of hidden neurons to extract higher-order 

statistics is particularly valuable. 

 

 

 

 

 

 

Figure 3.6 Multi-Layer Feed Forward Networks 

3.5 LEARNING METHODS 

 The important property of a neural network is its ability to learn 

from its environment, and to improve its performance through learning.  

Learning in the context of neural network can be defined as: 
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 Learning is a process by which the free parameters of a neural 

network are adapted according to the changes in the environment through a 

process of simulation by the environment in which the network is embedded.  

The type of learning is determined by the way in which the parameter 

changes take place in the environment. 

 This definition of the learning process implies the events that are 

given in the following sequence. An environment stimulates the neural 

network. 

 As a result of simulation the neural network undergoes 

changes in its parameters. 

 Because of the changes that have occurred in its internal 

structure, the neural network responds in a new way to the 

environment. 

 Learning algorithm is used to prescribe solutions to the problems 

encountered based on a set of well-defined rules.  In general, the learning 

algorithms differs from each other in the way the adjustment to a synaptic 

weight of a neuron is formatted.  Another factor to be considered is the way in 

which a neural network (learning machine), made up of a set of 

interconnected neurons are related to its environment. 

 In neural network, there are five basic learning rules: 

 Error – correction learning which is rooted in optimum 

filtering. 

 Memory – based learning, which operates by 

memorizing the training data explicitly. 

 Hebbian learning, which is inspired by neuro – biological 

considerations 
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 Competitive learning, which is also inspired by neuro – 

biological considerations. 

 Boltzmann learning, this is based on the  ideas borrowed 

from the statistical mechanics. 

3.5.1 Supervised Learning 

Figure 3.7. shows a block diagram that illustrates the structure of supervised 

learning.  In conceptual terms, a teacher having knowledge of the 

environment can be represented as a set of input–output examples.  The 

environment that is unknown to the neural network is the region of interest.  

Consider that the teacher and the neural network are both exposed to a 

training vector (i.e., example) drawn from the environment.  By virtue of built 

– in prior knowledge, the teacher is able to provide the neural network with a 

desired response for that training vector.  Based on the training vector and the 

error signal the network parameters are adjusted. 

 

 

 

 

        

 

Figure 3.7 Supervised Learning 
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3.5.2 Unsupervised Learning 

 In unsupervised or self – organized learning there is no external 

teacher or critic to oversee the learning process, as indicated in Figuare 3.8. 

Rather, provision is made for independent learning of the network, and the 

parameters of the network are optimized with respect to that measure.  Once 

the network has become familiar to the statistical, regularities of the input 

data, it develops the ability to form internal representations for encoding 

features of the input and thereby to create new classes automatically. 

 

 

Figure 3.8 Unsupervised Learning 

 Competitive learning has to be followed to perform unsupervised 

learning.  For example, a neural network, may be considered that consists of 

two layers, an input layer and a competitive layer.  The input layer receives 

the available data.  The competitive layer consists of neurons that compete 

with each other (in accordance with a learning rule) for the opportunity to 

respond to  the features contained in the input data.  The principle behind this 

is simple, the network operates in accordance with “winner takes all” 

strategy.  The neuron with a  greater number of total inputs wins the 

competition and turns on; all the other neurons are simply switched off. 

3.6 BACK PROPAGATION NETWORK  

 Back propagation is a systematic method that is used to train 

multilayer artificial neural networks. It is built on an important mathematical 

foundation and has very efficient application potential. The problems are 

solved with the help of back propagation network in many areas.  A multi-
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layer network can learn only input patterns to an arbitrary accuracy level.  

Normally one hidden layer is enough however more than one hidden layer is 

used.  The weight in a neural network represents the segment of the 

information about the input signal that has to be stored. 

3.6.1 Architecture of Feed Forward Back Propagation Network         

 Back Propagation neural network is the second type of neural 

network that is a multi-layer, feed forward neural network with an input layer, 

an output layer and a hidden layer as shown in Figure 3.9. The neurons in the 

hidden and output layers have biases that are connections from units whose 

output  must always be equal to 1.The inputs are fed to the back propagation 

network  and the output obtained from it could be in binary (0, 1) or bipolar  

(-1, +1).  The activation function is a function that increases monotonically 

and is also differentiable (Huang et al 2006).  The back propagation network 

implements the generalized delta rule.  It is a gradient descendent method, 

which minimizes the total squared error of the output of the network 

 

                        

 

 

 

 

 

Figure 3.9  Architecture of Feed Forward Back Propagation Network 
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3.7 FUZZY SYSTEM 

 Among the various changes in science and mathematics in this 

century, one important change is the concept of uncertainty. In science, this 

change has been manifested by a gradual transition from the traditional view 

of avoiding uncertainties by all possible means. According to alternative 

view, uncertainty is considered as inevitable and essential part of science, it is 

not only unavoidable plague, but also has a greater utility. 

 In constructing model, the three key characteristics of a system are 

model complexity, credibility and uncertainty. Allowing more uncertainty 

reduces the complexity and increase the credibility of the resulting model 

(Abdulhamit Subasi and Ergun Ercelebi 2005). The transition from traditional 

view to the modern view of the uncertainty is based on the emergence of 

several view theories of uncertainty, distinct from probability theory. They 

show that probability theory is capable of representing only one of several 

distinct types of uncertainty.    

 Lofti Zeadh published the modern concepts of uncertainty. He 

developed a concept based on the objects called  fuzzy sets. The fuzzy sets, 

are sets with boundaries that are not precise. The membership in a fuzzy set is 

not a matter of denial, but rather a matter of a degree.   

 According to Zeadh‟s uncertainty, consider that A is a fuzzy set 

and X is a relevant object, then the proposition that “X is a member of A” is 

not necessarily true or false, as required by two value logic, but it may be true 

only to some degree, the degree to which X is actually a member of A. The 

capability of fuzzy to express a gradual transition from membership to non-

membership and vice-versa has broad utility. So, it produces a meaningful 

representation of vague concepts that are expressed in natural language. 
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 A fuzzy set can be defined by mathematical expressions by 

assigning to each possible individual in the universe of discourse, a value 

representing its grade in the fuzzy set (Lin and Lee 1995). Fuzzy sets support 

a flexible sense of membership of elements to a set. According to crisp set 

theory, an element either belongs to or does not belong to a set, whereas in 

fuzzy set theory many degrees of membership (between 0 and 1) are allowed. 

3.7.1 Fuzzy Sets 

 A set can be specified by its members, as they characterize a set 

completely. The list of members A= {0, 1, 2, 3} is a finite set. Nobody can 

list all elements of an infinite set, and it can state some property which 

characterizes the elements in the set, for instance the predicate x >10. That set 

is defined by the elements of the universe of discourse which make the 

predicate true. There are two ways to describe a set: explicitly in a list or 

implicitly with a predicate. 

 The crisp set is defined in such a way that the individuals can be 

divided only into two groups; members and non-members. A fuzzy set can be 

defined mathematically by assigning to each possible individual in the 

universe of discourse a value representing its grade in the fuzzy set.   

3.7.2 Membership Function 

 Membership function does not represent the degree to which a 

fuzzy number belongs to a set. Rather it is the degree of truthfulness. The 

membership function can take values only between zero and one. 

 Every element in the universe of discourse is a member of the 

fuzzy set to some grade that ranges from zero to one. The set of elements that 

have a non-zero membership is called the support of the fuzzy set (Lin and 
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Cunningham 1995). The membership function µ(  ) is the function that ties a 

number to each element   of the universe. 

 Usually the membership function can take many forms in fuzzy set. 

The most commonly used forms are Triangular, Trapezoidal, Parabolic and 

Bell shaped. The determination of the shape is application oriented, that is the 

suitable shape of representation is determined only by the context of a 

particular application.  

3.7.3 Advantages of Fuzzy Logic 

 The advantages of Fuzzy logic are as follows 

 Linguistic, not numerical, variables are used making it similar 

to the way humans think. 

 The solution of previously unsolved problems can be used to 

model the traditional control systems with complex analytical 

Equation  s. This is due to their simplicity. 

 Rapid prototyping is possible because a system designer is not 

required to have a complete prior knowledge about the system 

before starting work. 

 It has high robustness. 

3.7.4 Fuzzification 

 Fuzzification is a process of converting real valued variable into 

fuzzy variable. Fuzzy variable is system dependent that depends on the nature 

of the system where it is implemented. Fuzzification involves the following 

functions 



107 

 

 Measures the values of input variables  

 Performs the function of mapping that transforms the range of 

input variable into the corresponding universe of discourse.  

 Performs the function of fuzzification to convert the input data 

into suitable linguistic values that are viewed as the labels of 

the fuzzy set. 

 In general, the linguistic variables are labelled as one of the 

following SMALL, MEDIUM, LARGE and so on; it differs in different 

applications and also differs in different sense of humans. 

3.7.4.1 Knowledge base 

 The knowledge base consisting of fuzzy IF-THEN rules is the heart 

of fuzzy system. The rule base is a collection of a set of fuzzy rules. The 

knowledge base contains the membership function of fuzzy subsets. Fuzzy 

rules may contain fuzzy variables and fuzzy subsets that are characterized by 

membership function. 

3.7.4.2 Fuzzy inference engine 

 Inference from a set of fuzzy rules involves fuzzification of the 

conditions of the rules, then propagating the membership values of the 

conditions to the outcomes of the rules. 

 There are two types of fuzzy IF-THEN rules that are most 

commonly used. 

 Mamdani type  

 Sugeno type 
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 In mamdani type both the input and output of the fuzzy controller 

are assigned as fuzzy sets whereas in  sugeno type, only the input is a fuzzy 

set and output maybe a linear or constant element  (Lin and Lu 1995).  

 There are three processes for interpreting if-then rule: 

 Resolve all fuzzy statements in the antecedent to a degree of 

membership between the values 0 and 1. 

 If there are multiple parts to the antecedent, apply fuzzy logic 

operators and resolve the antecedent to a single number 

between 0 and 1 

 Apply the implication method, using the degree of support for 

the entire rule to shape the output which maybe a fuzzy set or 

linear element. 

 Considering the following rule,  

 IF  AND  THEN credit limit is low: 

 Inference from this above rule involves (using fuzzification) 

looking up the membership value (MV) of the condition 'applicant is young' 

given the applicant's age, and the MV of 'income is low' given the applicant's 

salary. The method proposed by Lotfi Zade takes the minimum MV of all the 

conditions available and assigns it to the outcome 'credit limit is low'. This 

method is enhanced by having a weight for each rule between 0 and 1 which 

multiplies the MV assigned to the outcome of the rule. This weight can be 

assigned based on the Pattern rules view, or assigned at run time. By default 

each rule weight is set to values between 0 and 1. 
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 In a fuzzy rule base a number of rules with the outcome 'credit limit 

is low' will be fired. The inference engine will assigns the outcome 'credit 

limit is low', with the maximum MV available from all the fired rules. 

 To summarize the fuzzy inference involves the following: 

 Defuzzification is the process where conditions of each rule 

and assigning the outcome of each rule the minimum MV of 

its conditions multiplied by the rule weight 

 Assigns each outcome with the maximum MV available from 

its fired rules. 

 The outcome of fuzzy inference is the confidence factors 

(MVs) assigned to each outcome in the rule base. 

3.8 DE-FUZZIFICATION 

 De-fuzzification is done to convert the output fuzzy variable to a 

crisp value so that it can be used for control purpose. The controller 

performance is determined by the membership functions, knowledge base and 

method of de-fuzzification. 

 The most often used manmade de-fuzzification methods are 

 Centre- of –area defuzzification 

 Centre –of –sums defuzzification 

 First- of – maxima defuzzification 

 Middle – of – maxima defuzzification 

 Height defuzzification 
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The most often used sugeno de-fuzzification methods are 

 Weighted average defuzzification 

 Weighted sum  defuzzification 

3.9 NEURO- FUZZY SYSTEM: 

 In the field of artificial intelligence, neuro-fuzzy is the 

combination of artificial neural networks and fuzzy logic. Neuro-fuzzy was 

proposed by J. S. R. Jang. Neuro-fuzzy hybridization results in a hybrid 

intelligent system that c o m b i n e s  t h e  a d v a n t a g e s  o f  these two 

techniques by combining  the human-like reasoning   style  of fuzzy systems 

with the learning and connectionist structure of neural networks. Neuro-

fuzzy hybridization is widely termed as Fuzzy Neural Network (FNN) or 

Neuro-Fuzzy System (NFS) in the literature.  Neuro- fuzzy  system  (the  

more  popular  term  is  used  henceforth)  incorporates  the  human-like 

reasoning  style  of  fuzzy  systems by using fuzzy sets and  a  linguistic  

model consisting of a set of IF-THEN fuzzy rules. The main strength of 

neuro-fuzzy systems is that they are universal approximators with the ability 

to solicit interpretable IF-THEN rules. 

 The strength of neuro-fuzzy systems is based on two 

contradictory requirements in fuzzy modeling: interpretability versus 

accuracy. In practice, one of the two properties prevails (García et al 2008). 

The neuro-fuzzy  in  fuzzy  modelling  research  field  is  divided  into  two  

areas:  linguistic  fuzzy modelling that focuses on interpretability,  mainly 

the Mamdani model; and precise fuzzy modelling that focuses on accuracy, 

mainly the Takagi-Sugeno-Kang (TSK) model. 
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 Although     generally assumed   to be the  realization  of  a fuzzy 

system through connectionist networks, this term is also used to describe 

some other configurations including the following: 

 Deriving fuzzy rules from trained RBF networks. 

 Fuzzy logic based tuning of neutral network training. 

 Fuzzy logic criteria for increasing a network size. 

 Realizing fuzzy membership function through clustering 

algorithms learning in SOMs and neutral networks. 

 Representing fuzzification, fuzzy inference and 

defuzzification through multi-layers feed forward 

connectionist networks. 

 It must be pointed out that interpretability of the Mamdani-type 

neuro-fuzzy systems can be lost during hybridization. Certain measures need 

to be taken to improve the interpretability of neuro-fuzzy systems, wherein 

important aspects of interpretability of neuro-fuzzy systems are also 

discussed. 

 Integration of fuzzy logic a n d  neural networks 

 Hybrid systems combining fuzzy logic, neural networks, genetic 

algorithms, and expert systems are providing solutions for a wide variety 

of real- world problems. Each intelligent technique has its own 

computational properties (e.g. ability to learn, explanation of decisions) that 

make them suitable for particular problems and not for others.  For example, 

while neural networks are good at recognizing patterns, they are not good at 

explaining how they reach their decisions. Fuzzy logic systems, which can 

reason with imprecise information, are good at explaining their decisions but 
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they cannot automatically acquire the rules they use to make those decisions.  

These limitations have been a central driving force behind the creation of 

intelligent hybrid systems where two or more techniques are combined in a 

manner that overcomes the limitations of individual techniques.   Hybrid 

systems are also important while considering the varied nature of application 

domains.   Many complex domains have many component problems, each of 

which requires different types of processing. 

 If there  is a complex application  which has two distinct  sub-

problems,  say a signal processing task  and a serial reasoning task,  they are 

handled separately by  a neural  network  and  an expert  system  respectively  

can be used for performing these separate  tasks.  The intelligent hybrid 

systems cover a wide range of applications including process control, 

engineering design, financial trading,  credit evaluation,  medical diagnosis, 

and cognitive simulation. 

 The fuzzy logic provides an inference mechanism under cognitive 

uncertainty, whereas computational neural networks offer exciting 

advantages, like learning, adaptation, fault-tolerance, parallelism and 

generalization. To enable a system to deal with cognitive uncertainties in a 

manner similar to humans one has to incorporate the concept of fuzzy logic 

into the neural networks. The computational process of fuzzy neural systems 

is explained below. The initial stage is the development of a “fuzzy neuron” 

based on the understanding of biological neuronal morphologies, followed by 

learning mechanisms. This leads to the following three steps in the process of 

a fuzzy neural computation 

 Fuzzy neural models are developed from the motivation of 

biological neurons, 

 Models of synaptic connections which incorporates fuzziness 

into neural network, 
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 Learning algorithms are developed (that is the method of 

adjusting the synaptic weights) 

 Two possible models of Neuro Fuzzy Systems are 

 In accordance with linguistic statements, the fuzzy interface 

block feeds an input vector to a multi-layer neural network.  

The neural network can adapt to changes (trained) to yield the 

desired command outputs or decisions.  Figure 3.10 shows  

the first model of fuzzy neural system. 

 

 

 

 

Figure 3.10.The first model of fuzzy neural system. 

 A multi-layered neural network drives the fuzzy inference 

mechanism.  

 

 

 

 

 

Figure 3.11 The Second model of fuzzy neural system 
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 The membership functions of fuzzy systems are tuned by the 

Neural networks that are employed as decision-making systems for 

controlling equipment.  Although fuzzy logic can encode an expert 

knowledge directly using rules with linguistic labels, it takes more time to 

design and tune the membership functions which quantitatively define these 

linguistic labels. The time and cost can be reduced by using Neural network 

learning techniques which can also automate this process improving 

performance .Figure 3.11 shows the second model of fuzzy neural system. 

 In theory,  neural  networks,  and  fuzzy systems  are convertible 

that is, they are equivalent,  yet in practice,  each has its own advantages  and  

disadvantages.  The neural networks can acquire knowledge automatically  by 

the back propagation algorithm,  but  the  learning  process is relatively  slow 

and the analysis of the  trained  network  is difficult (black  box).  The 

structural knowledge(rules) cannot extract from the trained neural network or  

integrate special information about the problem into the neural network in 

order to simplify the learning procedure. 

 Fuzzy systems are much more simple and favorable because their 

behavior is based on fuzzy rules and thus their performance can be adjusted 

by making small changes in the rules.  But knowledge acquisition is very 

difficult in fuzzy systems  the  universe  of discourse  of each  input  variable  

needs  to  be divided  into several  intervals.Applications  of fuzzy systems  

are  restricted  to  the  fields where expert  knowledge is available  and  the  

number  of input  variables  is small. 

 To overcome the problem of knowledge acquisition, neural 

networks can be extended to automatically extract fuzzy rules from numerical 

data. Cooperative approaches use neural networks to preprocess data and for 

optimization of certain parameters of an ordinary fuzzy system and extract 

fuzzy (control) rules from data. A fuzzy-neuro system is broadly classified 
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into the fuzzy neural structure as feed forward (static) and feedback 

(dynamic) based on the computations involved in the process.  

 A typical fuzzy-neuro system that is more commonly used is 

Basenji's ARIC (Approximate Reasoning Based Intelligent Control) 

architecture. It is a neural network model of a fuzzy controller and learns to 

update its prediction based on the  behaviour  of the physical system and 

finetunes a predefined control knowledge base according to the updation. 

3.10 PROPOSED METHODOLOGY OF NEURO-FUZZY FILTER 

3.10.1  Preprocessing of EEG 

 The many dimensions of EEG signal contain only empty noises. 

Hence the process of reducing the dimensionality of EEG signal is called  

preprocessing. The preprocessing of  the EEG signal is performed to enhance 

the analysis on these signals. The removal of the  artifacts and short-time 

high-amplitude events enable one to highlight important characteristic 

features in the EEG signals (Rizon 2010). The main objective  of signal pre-

processing is to extract necessary information from the sensor responses and 

prepare the EEG signal for multivariate pattern analysis. There is a number of 

different methods and tools available to carry out preprocessing. Some of the 

methods are sampling, feature extraction, transformation and 

normalization.Using one among these methods one goes for feature 

extraction. This method pulls out specified data that is significant in some 

particular context and these pulled out data yield more information about the 

signal that can be used for further analysis and noise removal. 

 The computational process of fuzzy neural systems is explained 

below. The initial stage is the development of a “fuzzy neuron” based on the 

understanding of biological neuronal morphologies followed by learning 

mechanisms. This leads to the following three steps in the process of a fuzzy 

http://thescipub.com/author/?name=Mohamed|||Rizon
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neural computation 

Step I : Development of fuzzy neural models motivated by biological 

neurons, 

Step II : Models of synaptic connections which incorporates fuzziness in 

to Neural network, 

Step III : Development of learning algorithms (that is the method of 

adjusting the synaptic weights). 

 

 

 

 

 

 

 

 

Figure 3.12 Structure of Neuro-Fuzzy Filter 

 The Figure 3.12 gives the pictorial representation of the neuro-

fuzzy filter, that includes subnet works (Bednar et al 1987). The circle 

denotes aggregation techniques. In this study, signals namely artifacts and 

delayed artifacts have been taken as inputs and measured EEG signal as target 

for training the Neuro-Fuzzy filter structure used a generalized bell type as 

Layer 3 Layer 1 Layer 2 

β1Z1 

β2Z2 

β1 

β2 

α1 

H1(a1) 

a3
 a1 

2 

 

 

N 

 

N 

 

N 

 

N 

 

L1 

 

H1 

 

L2 

 

H2 

 

L3 

 

H3 

 

T 

 

T 

 

T 

 

 

 

 

 

a1 

a2
 a1 

2 

L1(a1) 

L3(a3) 

H3(a3) 

α3 

β3 β3Z3 

Z0 

Layer 4 Layer 5 



117 

 

membership function for tuning the parameters. The filter has the following 

structure: 

Layer 1 : The output of the node is the degree to which the given input 

satisfies the linguistic label associated with this node. 

Layer 2 : Each node computes the firing strength of the associated rule. 

The nodes of this layer are called rule nodes. 

 The output of top neuron is given in  Equation (3.17). 

 
)()()(

3322111
aLaLaL 

                    (3.17) 

 The output of the middle neuron is given in Equation  (3.18). 
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 The output of the bottom neuron is given inEquation  (3.19). 
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             (3.19)     

Layer 3 : This layer is labelled as N to indicate the normalization of the 

firing levels. The output of the top, middle and bottom neuron is 

the normalized firing level of the corresponding rule. It is given 

in Equation  (3.20), Equation  (3.21)and Equation  (3.22).    
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Layer 4 : The output of the top, middle and bottom neuron is the product 

of the normalized firing Level. (Medsker et al 1993). It is shown 

in Equation  (3.23), Equation  (3.24)and Equation  (3.25).     
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Layer 5 : The single node in this layer computes the overall system output 

as the sum of all incoming signals. The out put is  given in 

Equation  (3.26). 

  3322110
zzzz  

                                                  (3.26) 

  Assume that the Neuro-fuzzy filter has two inputs x,y and one 

output z. 

Rule 1 : If x is A1 and y is B1, it denoted as in Equation (3.27). 

  f1 =p1x+q1y+r1                                                                                      (3.27) 

Rule 2 : If x is A2 and y is B2, it denoted as in Equation (3.28). 

  f2 = p2x+q2y+r2                                                                                  (3.28) 

where p, q and r represent consequent parameters. A and B are linguistic 

labels. 
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3.11 FUZZY NEURONS 

 Let a simple neural net in Figure 3.13 be considered.  All signals 

and weights are real numbers.   The two input neurons do not change the 

input signals so their output is the same as their input.  The signal xi interacts 

with the weight wi to produce the product it is given in Equation  (3.29). 

 pi = wixi, i = 1, 2.                                   (3.29)   

 The input information pi is aggregated, by addition, to produce the 

input it is given in Equation  (3.30). 

 net = p1 + p2 = w1 x1 + w2 x2                    (3.30) 

to the  neuron. The neuron uses its transfer function f , which could be a 

sigmoidal function,  f (x) = (1 + e−x)−1, to compute the output y is given by 

Equation  (3.31). 

 y = f (net) = f (w1 x1 + w2 x2 ).                  (3.31) 

 This simple neural net, which employs multiplication, addition,   

and sig- moidal f , will be called as regular (or standard) neural net.Figure 

3.13 shows simple neuron set. 

                                                                                      

 

 

 

   Figure 3.13 Simple neuron set 
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 If one employs other operations employ like a t-norm, or a t-

conorm, to combine the incoming data to a neuron one obtains what is called 

hybrid neural net. 

 These modifications lead to a fuzzy neural architecture based on 

fuzzy arithmetic operations.  Let us express the inputs (which are usually 

membership degrees of a fuzzy concept) x1, x2 and the weights w1 , w2 over 

the unit interval [0, 1]. 

 Definition-1 : A neural net with crisp signals and weights 

and crisp transfer function forms a hybrid 

neural net.  However, 

 It can combine xi and wi   using a t-norm, t-conorm,  or  

some other continuous  operation, 

 It can aggregate p1   and p2   with a  t-norm,   t-conorm,   

or  any  other continuous  function 

 The f can be any continuous function from input to 

output 

 It is emphasized that all inputs, outputs and the weights of a hybrid 

neural net are real numbers taken from the unit interval [0, 1]. A processing 

element of a hybrid neural net is called fuzzy neuron.  In this chapter the 

following some fuzzy neurons are presented. 

 Definition-2:   (AND fuzzy neuron) 

 The signal xi  and wi  are combined by a triangular conorm S to 

produce pi ,It is given by Equation  (3.32). 

 pi = S(wi, xi),  i = 1, 2                                             (3.32) 
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 Figure 3.14 shows AND fuzzy neuron.The input information pi is 

aggregated by a triangular norm T to produce the output of the neuron it is 

given by Equation (3.33). 

 y = AND(p1 , p2 ) = T (p1 , p2 ) = T (S(w1 , x1 ), S(w2 , x2 )  

              (3.33)                                                                     

 So, if T = min and S = max then the AND neuron realizes the min-

max composition .It is given by Equation  (3.34) 

 y = min {w1 ∨ x1, w2 ∨ x2}.                                     (3.34) 

                            

                                                      

 

Figure 3.14 AND fuzzy neuron 

 Definition-3:   (OR fuzzy neuron) 

 The signal xi and wi are combined by a triangular norm T to 

produce pi is given by Equation (3.35). 

 pi = T (wi, xi),  i = 1, 2.                                        (3.35)  

 The input information pi is aggregated by a triangular conorm S to 

produce the output of the neuron y.it is given by Equation  (3.36). 

 y = OR(p1 , p2 ) = S(p1 , p2 ) = S(T (w1 , x1 ),T (w2 , x2 ))         

              (3.36) 
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Y=T(S(w1,x1),S(w2,x2)

) 



122 

 

 

                       

 

 

Figure 3.15 OR fuzzy neuron 

 So, if T = min and S = max then the AND neuron realizes the max-

min composition is given by Equation (3.37). 

 y = max {w1 ∧ x1, w2 ∧ x2}                                              (3.37) 

 The AND and OR fuzzy neurons realize basic logic operations on 

the membership values.  The role of the connections is to differentiate 

between levels of impact that the inputs individually might have on the result 

of aggregation. It is noted that (i) the higher the value wi the stronger the 

impact of xi on the output y of an OR neuron, (ii) the lower the value wi the 

stronger the impact of xi on the output y of an AND neuron. 

 The range of the output value y for the AND neuron is computed 

by letting all xi equal to zero or one. In virtue of the monotonicity property of 

triangular norms, to obtain y ∈ [T (w1 , w2 ), 1] and for the OR neuron one 

derives boundaries  y ∈ [0, S(w1 , w2 )]. Figure 3.15 shows OR fuzzy 

Neuron.                       

 Definition-4:   (Implication-OR fuzzy neuron) 

 Figure 3.16 shows the implication-OR fuzzy neyron.The signal xi 

and wi are combined by a fuzzy implication operator I to produce pi it is 

W2 

X1 

X2 

W1 

Y=S(T(w1,x1),T(w2,x2)) 
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given by Equation (3.38). 

 pi = I (wi, xi) = wi  ← xi, i = 1, 2.               (3.38) 

 The input information pi is aggregated by a triangular conorm S to 

produce the output of the neuron the out put y is given in Equation (3.39). 

 y = I (p1, p2) = S (p1, p2) = S(w1  ← x1 , w2 ← x2 )        (3.39) 

 

 

                      

 

Figure 3.16 Implication-OR fuzzy neuron 

 Definition-5:   (Kwan and Cai‟s fuzzy neuron) 

 The signal xi  interacts  with the weight wi  to produce the product 

.It is given in Equation (3.40). 

 pi  = wixi,  i = 1,...,n                                            (3.40) 

 The input information  pi is aggregated by an aggregation function 

h to produce the input of the neuron is given by Equation  (3.41). 

 z = h(w1 x1 , w2 x2 ,..., wnxn)                    (3.41) 

the state of the neuron  is computed by s.it is given in Equation (3.42).  

 s=f(z-ɵ)                                           (3.42)         

W2 

X1 

X2 

W1 

Y=S(w1<-x1,w2<-x2) 
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where f is an activation  function and θ is the activating  threshold.  And the 

m outputs of the neuron  are computed by yj.It is given in Equation  (3.43) 

 yj  = gj (s),  j = 1,...,m                                     (3.43) 

where gj , j = 1,...,m  are  the m output functions  of the neuron  which rep- 

resent  the membership functions of the input pattern  x1 , x2 ,..., xn in all the 

m fuzzy sets.Figure 3.17 shows Kwan and Cai‟s fuzzy neuron 

 

                    

 

 

Figure 3.17  Kwan and Cai’s fuzzy neuron 

 Definition-6:   (Kwan and Cai‟s max fuzzy neuron) 

Figure 3.18 shows Kwan and Cai‟s max fuzzy neurons.The signal xi interacts 

with the weight wi to produce the product pi.it is given in Equation  (3.44). 

 pi = wixi, i = 1,2.                                       (3.44) 

 The input information pi  is aggregated by the maximum conorm is 

given in Equation  (3.45). 

 z = max{p1 , p2 } = max{x1,w1.x2,w2}                           (3.45) 

and the j-th output of the neuron  is computed by Equation  (3.46). 
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 yj  = gj (f (z − θ)) = gj (f (max{w1 x1 , w2 x2 } − θ))              (3.46) 

where f is an activation  function. 

 

          

 

 

Figure 3.18 Kwan and Cai’s max fuzzy neurons 

 Definition-7:   (Kwan and Cai‟s min fuzzy neurons)  

 The signal xi interacts with the weight wi to produce the product is 

given in Equation  (3.47). 

 pi = wixi, i = 1,2.                                         (3.47) 

 The input information pi is aggregated by the minimum norm y is 

given in Equation  (3.48) 

 y = min{p1 , p2 } = min{w1 x1 , w2 x2 }                      (3.48) 

and the j-th output of the neuron  is computed by Equation  (3.49). 

 yj  = gj (f (z − θ)) = gj (f (min{w1 x1 , w2 x2 } − θ))             (3.49) 

where f is an activation  function. 
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                        Figure 3.19 Kwan and Cai’s min fuzzy neuron 

 It is well-known that regular nets are nothing but approximators, 

i.e. they can approximate any continuous function on a compact set to 

arbitrary accuracy. In a discrete fuzzy expert system one inputs a discrete 

approximation to the fuzzy sets and obtains a discrete approximation to the 

output fuzzy set. Usually discrete fuzzy expert systems and fuzzy controllers 

are continuous mappings.  Conclude that  given a continuous  fuzzy expert  

sys- tem, or continuous fuzzy controller, there is a regular net that  can 

uniformly approximate it  to  any  degree of accuracy  on compact  sets.Figure 

3.19 shows Kwan and Cai‟s min fuzzy neuron. 

 Though hybrid neural nets cannot use directly the standard error 

back propagation algorithm for learning, they can be trained by steepest 

descent methods to learn the parameters of the membership functions 

representing the linguistic terms in the rules. 

 The direct fuzzification of conventional neural networks is to 

extend connection weights and/or inputs and/or fuzzy desired outputs (or 

targets) to fuzzy numbers. 

3.12 RESULTS AND DISCUSSION 

 In this Neuro fuzzy filter method three artifacts are (EOG, EMG, 

and ECG) to the EEG signal. The artifacts are removed using two methods in 

parallel manner. The two methods are adaptive filtering and neuro-fuzzy 
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filter. The denoised signals from both the methods are cross correlated using a 

few parameters such as SNR and PSD. A few suggestions are made for  the 

real-time removal of Artifacts using adaptive filtering. Neuro-fuzzy 

approaches are very promising for non-linear filtering of noisy images. It has 

not been proved that they are applicable for signals and so in this method the 

noise is removed from the EEG signal by both adaptive and neuro-fuzzy 

filtering method and the performance of them are noted and compared. In this 

method, the primary input is the measured EEG and the reference input is the 

artifacts signal. 

  Least Mean Square algorithm is used to implement Adaptive filter. 

A difficulty found in this work was the determination of L (filter order) and μ 

(convergence factor). These parameters are very important; L, because it leads 

to appropriate filtering, and μ, to get adequate adaptation. If μ is too big, the 

filter becomes unstable, and if it is too small, the adaptation may turn out too 

slow. Several tests were carried out to determine the optimum value for these 

parameters. 

 These disadvantages are not available in the proposed Neuro-Fuzzy 

filter. Neuro-fuzzy structure is specifically designed to combine even 

different processing strategies for data highly corrupted by one or more noise 

distributions. The adoption of a sophisticated detail preserving mechanism 

makes it possible to perform a very effective noise cancellation. Such a 

mechanism adjusts the output correction depending on the uncertainty 

occurring in the noise detection process. K means algorithm was found to be 

more effective than Least Mean Square algorithm. 
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3.12.1 Artifact removal using Adaptive filter 

 In this section, the results of EEG signal with five Trial s of  artifact 

removals using Adaptive filter is discussed. The following results were 

obtained using MATLAB software. 

 Let the real EEG signal and the mixed artifacts be  considered 

(EOG+EMG+ECG). Adaptive filtering is performed till the EEG signal is 

free from the artifacts. Figure 3.20 shows (a) original EEG signal (b) noised 

signal (c) denoised signal. 

 

Figure 3.20 Result of Adaptive filter 
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3.12.2 SNR value resulted in Adaptive filtering 

 Table.3.1 Summarizes the Signal to Noise ratio of corrupted signal 

(EEG+ Artifact) and Denoised Signal (Corrected EEG) using Adaptive filter 

(Paulchamy Balaiah and Ilavennila, 2012). The table clearly shows that the 

Signal to Noise Ratio of denoised signal is higher than the corrupted Signal 

Table 3.1 SNR value of Adaptive filter 

Trials 
SNR for Corrupted 

Signal 

SNR for De-noised 

Signal 

Trial -1 10.1040 12.5020 

Trial -2 11.1020 13.1050 

Trial -3 12.3010 14.7030 

Trial -4 12.9210 14.9010 

Trial-5 13.1020 15.1090 
 

3.12.3 Artifacts removal using Neuro-Fuzzy filter 

 Let the real EEG signal and the mixed artifacts  be considered 

(EOG+EMG+ECG). Neuro fuzzy filtering is performed till the EEG signal is 

free from the artifacts. The Figure 3.21 shows (a) original EEG signal (b) 

noised signal (c) denoised signal. 
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Figure 3.21 Result of Neuro-Fuzzy filters 

3.12.4 ECG Artifacts removal using Neuro-Fuzzy filter 

 One may consider the real EEG signal and the mixed artifacts 

(ECG). Neuro fuzzy filtering is performed till the EEG signal is free from the 

artifacts. The Figure 3.22 shows (a) original EEG signal (b) noised signal (c) 

denoised signal.  
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Figure 3.22 Result of Neuro-Fuzzy filters (EEG+ECG) 

3.12.5 EMG Artifacts removal using Neuro-Fuzzy filter 

 One may consider the real EEG signal and the mixed artifacts 

(EMG). Neuro fuzzy filtering is performed till the EEG signal is free from the 

artifacts. The Figure 3.23 shows (a) original EEG signal (b) noised signal (c) 

denoised signal. 
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Figure 3.23 Result of Neuro-Fuzzy filters (EEG+EMG) 

3.12.6 EOG Artifacts removal using Neuro-Fuzzy filter 

 Let the real EEG signal and the mixed artifacts be considered 

(EOG). Neuro fuzzy filtering is performed till the EEG signal is free from the 

artifacts. The Figure 3.24 shows (a) original EEG signal (b) noised signal (c) 

denoised signal. 
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Figure 3.24  Result of Neuro-Fuzzy filters (EEG+EOG) 

3.12.7 SNR value resulted in Neuro-Fuzzy filtering 

 Table 3.2: Summarizes the Signal to Noise ratio comparison of 

10Trial s of Noisy signal (EEG+ECG+EMG+EOG Artifact) and Denoised 

Signal (Corrected EEG) using Neuro-Fuzzy filter.Figure 3.25 shows the SNR 

Curve for neuro fuzzy filtering 

Table 3.2 SNR value of Neuro-Fuzzy filters 

Trials 
SNR for Corrupted 

Signal 

SNR for De-noised 

Signal 

Trial -1 10.1040 18.5040 

Trial -2 11.1020 19.1020 

Trial -3 12.3010 19.7030 

Trial -4 12.9210 19.9040 

Trial -5 13.1020 20.2060 
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Figure 3.25 SNR Curve for neuro fuzzy filtering 

3.12.8 Power spectral density of Denoised EEG signal 

 Figure 3.26 shows the Power Spectral Density of the denoised EEG 

signal in the adaptive filter method (Senthilkumar et al 2008). From this 

figure it is shown that the powers of the spectral components have been 

retained. 

 

Figure 3.26 PSD of Neuro-Fuzzy filters 
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3.13 CORRELATION BETWEEN ORIGINAL AND ARTIFACTS 

REMOVED EEG SIGNAL 

 Figure 3.27. Shows the correlation plot for the each Trial  of 

ORIGINAL EEG and mixed Artifacts Removed EEG in Neuro-Fuzzy 

filtering. This Shows how close both the signals are in terms of the Shape.   

(X-Axis Frequency ,Y-Axis Correlation Co-efficient) 

 

Figure 3.27 Correlation Plot using Neuro fuzzy filter 

3.13.1 Comparative study of PSD 

 The following plot shows the Power Spectral Density of the 

denoised EEG signal in both adaptive and neuro-fuzzy filter methods. 

 Figure 3.28. Shows the Power Spectra of the denoised EEG in both 

adaptive and neuro-fuzzy filter methods. From this figure it is shown that the 

powers of the spectral components have been retained. 



136 

 

 

Figure 3.28 Power Spectral density plot 

3.13.2 Correlative SNR value 

 Table.3.3: Summarizes the Signal to Noise ratio of Denoised Signal 

(Corrected EEG) using Adaptive filter and Neuro-Fuzzy filter. Concluding, 

that the Signal to Noise Ratio of denoised signal using Neuro-Fuzzy filter is 

higher than the denoised signal using Adaptive filter.           

Table 3.3  SNR Value Comparison between Adaptive and Neuro fuzzy 

filter 

Trial s 
SNR for 

Corrupted Signal 

SNR for De-noised Signal 

Adaptive 

Filter 

Neuro fuzzy 

filter 

Trial-1 10.1040 12.5020 18.5040 

Trial-2 11.1020 13.1050 19.1020 

Trial-3 12.3010 14.7030 19.7030 

Trial-4 12.9210      14.9010 19.9040 

Trial-5 13.1020 15.1090 20.2060 
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 Figure 3.29 SNR curve between adaptive and neuro fuzzy filtering 

 Figure 3.29 shows the signal to noise ratio curve for adaptive filter 

and neuro fuzzy filter along with corrupted signal. This curve clearly shows 

that the neuro fuzzy filter proves better result than adaptive filter. 

3.14 SUMMARY 

 In chapter 3  a detailed explanation of adaptive filtering method is 

seen that provides details of adaptive filter that have the capability of 

modifying their properties according to selected features of the signals being 

analyzed and its structure, the procedure in removing artifacts, its advantages 

and disadvantages. The statistical result has also been shown that ECG and 

EOG components were attenuated in smaller proportion. By the proposed 

technique called Neuro-fuzzy filtering method, it is discussed in detail. Since 

Neuro-fuzzy refers to the combination of artificial neural network which are 

composed of artificial neurons or nodes and fuzzy logic that are  often  

regarded  as  concepts  which  in  their application are neither completely true 

or completely false, or which are partly true and partly false are discussed in 

brief. Also, the structure and methodology of Neuro-fuzzy filter in removal of 
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artifacts are discussed. Ultimately the results of EEG signal with several 

artifact removal using Adaptive filter and Neuro-Fuzzy filter are discussed.  

In the proposed method EEG is subjected to noise signal and it is 

contaminated. Then the noise is removed by means of Adaptive filter and 

Neuro-fuzzy filter. The SNR ratio for both noised and denoised signal is 

calculated and it is observed that the SNR of the denoised signal is higher 

than the noised one. Also the power spectral density of the denoised signal is 

plotted. From the observations the performance of both adaptive filter and the 

Neuro-fuzzy filter is noted. By the comparative study conclude that, the 

performance of Neuro-Fuzzy filter is better than the Adaptive filter. The 

fidelity of the reconstructed EEG signal is assessed quantitatively using 

parameters such as SNR (Signal to Noise Ratio) and PSD (Power Spectral 

Density). 
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CHAPTER 4 

ARTIFACTS REMOVAL USING WAVELET  

TRANSFORM 

 

4.1 INTRODUCTION 

 This chapter shows a new method to remove the eye-movement 

artifact from the Electro-encephalogram (EEG) which is based on Haar 

transform and frequency analysis. Transfer of eye-movement activity to EEG 

can have frequency dependent amplitude and phase characteristics. The 

proposed method is suitable for handling such transfer because the threshold 

formula is used in the frequency domain. The method is demonstrated with 

artificial signal-in-noise EOG (Electro-oculogram) and EEG series. In the 

EEG noise an event related potential (ERP) is buried as a constant signal and 

in the EOG noise a changing EOG response (saccadic eye-movement) is 

simulated before adding the whole series to the EEG series.  

 The decreasing levels of transfer from EOG on EEG leads are also 

simulated as the EOG artifact diminishes from the frontal to the occipital 

area. Owing to this possible frequency dependent phase characteristics a time-

shift of the EOG is also simulated. This  chapter discusses a method to 

automatically identify slow varying Ocular Artifact  zones applying wavelet 

based adaptive thresholding algorithm only to the identified Ocular Artifacts 

zones, which avoids the removal of background EEG information. The 

adaptive thresholding applied only to the Ocular Artifacts zone does not 

affect the low frequency components in the non-Ocular Artifacts zones  but 
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preserves the shape (waveform) of the EEG signal in non-artifact zones which 

is of great importance in clinical diagnosis. The subtraction formula, corrects  

accurately the influence of the EOG artifact on EEG activity.  

4.2 EXTRACTING KNOWLEDGE FROM EXISTING 

METHODS 

4.2.1 Artifact Removal 

 Artifact removal is the process of identifying and removing 

artifacts from brain signals. An artifact removal method should be able to 

remove the artifacts as well as keep the related neurological phenomenon 

intact.  

 Common methods for removing the artifacts in EEG signals are 

shown below: 

 Linear filtering 

 Linear combination and regression 

 Blind source separation, principle component analysis 

 Wavelet transform 

 Nonlinear adaptive filtering and source dipole analysis (SDA) 

4.2.2 Subtraction Method 

 Subtraction methods are based on the assumption that the measured 

EEG is a linear combination of an original EEG and a signal caused by any 

sort of body movement E.g. Eye movement, called EOG (electrooculogram) 

is a potential produced by movement of the eye or eyelid. The original EEG is 

hence, recovered by subtracting separately the recorded EOG from the 
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measured EEG using appropriate weights .This method proves good even for 

the other types of artifacts such as EMG, ECG and so on. 

4.2.3 Linear Combination and Regression Method 

 Using a linear combination of the EOG-contaminated EEG signal 

and the EOG signal is the most common technique for removing ocular 

artifacts from EEG signals. The linear combination technique is based on the 

following Equation (4.1). 

 
)(.)()( KEOGstEEGtEEG

truerec
           (4.1) 

where, EEGrec (t) - Recorded EEG which is contaminated signal and 

holds artifacts 

 EEGtrue (t) - EEG due to the cortical activity (i.e., Brain activity) 

 s.EOG (K) - Propagated ocular artifact due to eye blinks and 

movements having impact over the recording site.s 

is an unknown constant. 

 A popular method that aims at minimizing theeffect of noise on the 

estimates employs linear regression using least square criterion to estimate the 

value ofK.A question arises as to whether the value of K should be calculated 

separately for each type of EOGartifact and for the different frequencies of a 

particular EOG artifact (CarrieAJoyce et al 2009) .One problem with using 

the above linearcombination and regression approach is that the EOG signal 

to be subtracted from the EEG signal. However,subtracting the EOG signal 

may also remove part of the EEG signal. EMG artifacts do not have any 

referencechannels, and applying regression using signals from multiple 

muscle groups requires multiple referencechannels. Regression techniques for 

the removal of head-movement artifacts, and jaw clenching, spit 

swallowingcan be applied. 
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4.2.4 Principal Component Analysis  

 Multi-channel EEG recordings can be expressed by a P(time 

points) x N(channels) matrix, E, anddecomposed as a product of three 

matrixes,E=USVT, where U is an P x N matrix such that UT U =I, S is a NxN 

diagonal matrix, and V is an NxN matrix such that VTV=VVT=1.If E is an 

EEG epoch of N channels and time points, U contains its N normalized 

Principal Components that are decor related linearly and can be re-mixed to 

reconstruct the original EEG. PCA uses the eigenvectors of the covariance 

matrix of the signal to transform the data into a new coordinate system and to 

find the projection of the input data with greater variances. The components 

of the signal are then extracted by projecting the signal onto the eigenvectors. 

PCA has been shown to be an effective method for removing ocular artifacts 

from EEG signals. A disadvantage of PCA is that artifacts are uncorrelated 

with the EEG signal (Lagerlund  et al2009). This is a stronger requirement 

than the independency requirement of ICA. It has been observed that PCA 

cannot completely separate eye-movement artifacts, EMG and ECG artifacts 

from the EEG signal, especially when they have comparable amplitudes. 

Besides ,PCA does not necessarily decompose similar EEG features into the 

same components applied to different epochs. 

4.2.5 Canonical Correlation Analysis 

 The Canonical Correlation Analysis (CCA) is developed to 

overcome the disadvantages of ICA. CCA is used as a Blind Source 

Separation technique (BSS) for artifacts removal from EEG signal. CCA 

based BSS method utilizes the temporal auto correlation in the source signal 

as a contrast function. It measures the linear relationship between two multi-

dimensional variables, by finding two bases which are optimal with respect to 

correlation. CCA method has a considerable amount of spectral error and thus 

it cannot be implemented in the real time. 
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4.2.6 Blind Source Separation (BSS) 

 BSS techniques separate the EEG signals into components that 

“build” the EEG signals. They identify the components that are attributed to 

artifacts and reconstruct the EEG signal without these components. Among 

the BSS methods, Independent Component Analysis (ICA) is most widely 

used. ICA is a method that blindly separates mixtures of independent source 

signals, forcing the components to be independent and widely applied to 

remove ocular artifacts from EEG signals. Preliminary studies have shown 

that ICA increases the strength of the motor-related signal components in the 

Mu rhythms, and is thus useful for removing artifacts in BCI systems. BSS 

methods have been used to remove EOG, EMG and ECG artifacts inEEG 

clinical studies; an advantage of using BSS methods such as ICA is that they 

do not rely on the availability of reference artifacts for separating the artifacts 

from the EOG signals. A disadvantage of ICA,along with other BSS 

techniques, is that they usually need prior visual inspection to identify artifact 

components. 

4.2.7 Linear filtering 

 Linear filtering is useful for removing artifacts located in certain 

frequency bands that do not overlap with those of the neurological 

phenomena of interest. For example, low-pass filtering can be used to remove 

EMG artifacts and high-pass filtering can be used to remove EOG artifacts. 

Linear filtering was commonly used in the early clinical studies to remove 

artifacts in EEG signals.  

 The advantage of using filtering is its simplicity. Also the 

information from the EOG signal is not needed to remove the artifacts. This 

method, however, fails when the neurological phenomenon of interest and the 

EMG, ECG or EOG artifacts overlap or lie in the same frequency band. As a 
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result, a simple filtering approach cannot remove EMG or EOGartifacts 

without removing a portion of the neurological phenomenon. More 

specifically, since EOG artifacts generally consist of low-frequency 

components, using a high-pass filter will remove most of the artifacts and 

forEMG artifacts, using a low pass filter will remove some artifacts. 

4.3 ARTIFACTS REMOVAL FROM EEG USING HAAR 

WAVELET TRANSFORM 

 Wavelet transforms are signal-processing algorithms similar to 

Fourier transforms that are used to convert complex signals from time to 

frequency domains. However, unlike Fourier transforms, wavelets are able to 

functionally localize a signal in both the time and frequency space, thus 

allowing  the transformed data to be simultaneously analyzed in both the 

domains (frequency and time). The wavelet transform of the noisy signal 

generates the wavelet coefficients which denote the correlation coefficients 

between the noisy EEG and the wavelet function. Depending on the choice of  

the mother wavelet function (which may resemble the noise component), the 

larger coefficients will be generated corresponding to the noise affected 

zones. Ironically smaller coefficients will be generated in the areas 

corresponding to the actual EEG.  

 The larger coefficients will now be an estimate of noise. 

Appropriate threshold limit is to be found which separates the noise 

coefficients and the signal coefficients. A proper thresholding function is to 

be chosen to discard the noise coefficients appropriately. The thresholding 

functions decide which coefficients should be retained and what should be 

done to them. Hence, discarded coefficients would result in the removal of 

noise, and the retained coefficients represent the wavelet coefficients of the 

de-noised EEG signal. On taking the inverse wavelet transform, the de-noised 

signal is obtained and so  the selection of  the threshold and thresholding 
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function plays a crucial role in EEG de-noising(Croft and Barry2009).  

Applied wavelet based adaptive thresholding algorithm only to identify ocular 

artifact zones, which avoids the removal of background EEG information.  

4.3.1 Wavelet Transform 

 The Wavelet transform is an emerging signal processing technique 

that can be used to represent the real-time non stationary signals with high 

efficiency. Indeed, the wavelet transform is gaining momentum to become an 

alternative tool to traditional time-frequency representation techniques like 

the Discrete Fourier Transform and the Discrete Cosine Transform. By virtue 

of its multi-resolution representation capability, the Wavelet transform has 

been used effectively in vital applications such as transient signal analysis, 

numerical analysis, computer vision, image compression, among many other 

audio visual applications. Wavelet transform needs to be embedded in 

consumer electronics, and thus a single chip hardware implementation is 

more desirable than a multi-chip parallel system implementation.  

 The wavelet transform is a transform similar to the Fourier 

transform (or much more to the windowed Fourier transform) with a 

completely different merit function. The main difference is this: Fourier 

transform decomposes the signal into sines and cosines, i.e. the functions 

localized in Fourier space; in contrary the wavelet transform uses functions 

that are localized in both the real and Fourier space. Generally, the wavelet 

transform can be expressed by the following Equation (4.2). 
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where the * is the complex conjugate symbol and function ψ is some function. 

This function can be chosen arbitrarily provided that it obeys certain rules.  

 As  seen, the wavelet transform is infact an infinite set of various 

transforms, depending on the merit function used for its computation. This is 

the main reason, why the term “wavelets transform” is used in different 

situations and applications. There are also many ways to sort out the types of 

the wavelet transforms(Krishnaveni et al 2011). Here only the divisions based 

on wavelet orthogonally is shown. One can use orthogonal wavelets for 

discrete wavelet transform development and non-orthogonal wavelets for 

continuous wavelet transform development. These two transforms have the 

following properties:  

1. The discrete wavelet transform returns a data vector of the 

same length as the input is. Usually, even in this vector many 

data are almost zero. This corresponds to the fact that it 

decomposes into a set of wavelets (functions) that are 

orthogonal to its translations and scaling. Therefore such 

signals are decomposed to the same or lower number of the 

wavelet coefficient spectrum as it is the number of signal data 

points. Such a wavelet spectrum is very good for signal 

processing and compression, for example, no redundant 

information can be had here.  

2. The continuous wavelet transforms in contrary returns an 

array one dimension larger than the input data. For an 1D 

data, one can obtain an image of the time-frequency plane. 

The signal frequencies evolution can easily  be seen during the 

signal and can compare the spectrum with other signals 

spectra. As  the non-orthogonal set of wavelets, is used here 
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data are correlated highly, and  so a big redundancy is seen 

here. This helps to see the results in a more humane form.  

4.3.2 Wavelet Families 

 There are a number of basic functions that can be used as the 

mother wavelet for Wavelet Transformation. Since the mother wavelet 

produces all wavelet functions used in the transformation through translation 

and scaling, it determines the characteristics of the resulting Wavelet 

Transform. Therefore, the details of the particular application should be taken 

into account and the appropriate mother wavelet should be chosen in order to 

use the Wavelet Transform effectively. The wavelet families are shown in 

Figure 4.1. 

       

        a) Haar    b) Daubechies     c) Coiflet 1  d)Symlet2 

 

  e) Meyer                 f) Morlet  g)Mexican 

Figure 4.1 Wavelet families 

 Haar the wavelet is one of the oldest and simplest wavelet. 

Therefore, any discussion of wavelets starts with the Haar wavelet.  



148 

 

 Daubechies wavelets are the most popular wavelets. They 

represent the foundations of the wavelet signal processing and 

are used in numerous applications. These are also called 

Maxflat wavelets as their frequency responses  the maximum 

flatness at frequencies 0 and π. This is a very desirable 

property in some applications. 

 The Haar, Daubechies, Symlets and Coiflets are compactly 

supported orthogonal wavelets. These wavelets along with 

Meyer wavelets are capable of a  perfect reconstruction. 

 The Meyer, Morlet and Mexican Hat wavelets are symmetric 

in shape. The wavelets are chosen based on their shape and 

their ability to analyze the signal in a particular application.  

4.3.3 Haar Wavelet 

 The Haar transform is the simplest of the Wavelet transforms that 

cross-multiplies a function against the Wavelet with various shifts and 

stretches, much like the Fourier transform cross-multiplies a function against 

a sine wave with two phases and much stretches. In discrete form, Haar 

wavelets are related to a mathematical operation called the Haar transform. 

TheHaar transform serves as a prototype for all other wavelet transforms. 

Like all wavelet transforms, theHaar transform decomposes a discrete signal 

into two sub signals of half its length. One sub signal is a running average of 

trend; the other is a running difference or fluctuation. 

4.3.4 Properties 

 The Haar transform has several desirable properties. They are given 

below: 
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 The Haar transform is a fast transform. 

 Haar transform is real and orthogonal. 

 The basis of the Haar matrix is ordered in a sequence manner. 

4.3.5 Advantages 

 The Haar wavelet transform has a number of advantages. 

 It is conceptually simple. 

 It is fast. 

 It is memory efficient, since it can be calculated in a  place 

without a temporary array. 

 It is exactly reversible without the edge effects that  create a 

problem with other wavelet transforms. 

4.3.6 Limitations 

 The Haar transform also has limitations which can be a problem for 

some applications. 

 In generating each set of averages for the next level and each 

set of coefficients, the Haar transform performs an average 

and difference on a pair of values. Then the algorithm shifts 

over by two values and calculates another average and 

difference on the next pair. 

 The high frequency coefficient spectrum should reflect all 

high frequency changes. The Haar window is only two 

elements wide. If a big change takes place from an even value 
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to an odd value, the change will not be reflected in the high 

frequency coefficients. 

 So, Haar wavelet transform is not useful in compression and noise 

removal of audio signal processing. 

4.4 HAAR WAVELET BASED DETECTION OF CHANGE IN 

THE STATE OF THE EYES 

 The need to continuously monitor the EOG while recording the 

EEG Signal and its corruption due to concentration on the part of the user so 

as not to move or blink his eyes forces one to device an alternate method for 

detecting and removing the ocular artifacts (Krishnaveni et al  2011). The 

EEG Signal which is picked up by non-invasive methods over the scalp of the 

subject is corrupted by a multitude of artifacts of which those caused by the 

EOG cause maximum distortion. 

  In this section a brief description  of the effect that the Ocular 

Artifacts have in the amplitude and frequency spectrum of the EEG data that 

is recorded is discussed  a novel and elegant technique  is described which the 

sharply varying Haar Wavelets to accurately detect changes in the uses state 

of the eye and this is to be extended in the subsequent section to detect eye-

blinks and eyeball movements. 

4.4.1 Amplitude dependence on the state of the eye 

 It has been known for quite some time now that the Alpha Rhythm 

of the EEG,which is the principal resting rhythm of the brain in adults when 

they are awake, is directly influenced by visual stimuli. Auditory and mental 

arithmetic tasks with the eyes closed leads to strong alpha waves, which are 

suppressed when the eyes are open. This property of the EEG has been used, 
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ineffectively, for a long period of time to detect eye blinks and movements. 

The slow response of an effective de-nosing technique forced researchers to 

study the frequency characteristics of the EEG as well. 

4.4.2 EEG Recorded During Change in State of the Eye 

 The successful de-noising of the recorded EEG signal is directly 

dependent upon the precise detection of change in state of the eye from the 

open state to the closed state and vice-versa. For this one requires a 

continuous recording of the EEG signal regardless of change in the state of  

the eye. The immediate increase (or decrease) in the amplitude of the EEG 

signal when the eyes are closed (or opened) has been  known to medical 

scientists for quite some time, but using this difference in amplitude levels to 

control external devices by thresholding had gone unnoticed for over 40 years 

and it was not until 1998 that a team of scientists at the university of 

technology, Sydney, Australia noticed this fact and made what is known 

today, as the „Mind switch‟ but amplitudethresholding though useful for Bio-

Control, cannot be used to effectively detect the eye blinks that occur quite 

rapidly. So the focus of research on detection and de-noising of these Ocular 

Artifacts in EEG, shifted from the time domain to frequency domain. 

4.5 DETECTION OF CHANGE IN STATE OF THEEYES: NEED 

FOR A HAAR WAVELET BASED APPROACH 

 After the analysis of the frequency spread of the EEG data that 

contained the Ocular Artifacts, researchers found that the difference in 

frequency of the Spikes caused due to Rapid Eye Blink (REB) and the EEG 

signal could be used along with a simultaneous recording of the EOG to 

detect and remove these artifacts. But correlation of the EEG and EOG is 

futile, especially because of inherent corruption of the EEG data by the 

restraint on the user‟s eye movements and blinks. The failure of accurate 
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detection of these artifacts by singular observation of the time or frequency 

domains forces one to use wavelets to study time-frequency maps. 

  In this research ,theHaar wavelet of higher orders is used to 

decompose the recorded EEG signal to detect the exact moment when the 

state of the eyes changes and on subsequent section to eye-blinks and 

movements of the eyeballs as well.  

4.6 PROPOSED METHODOLOGY 

 The flow chart of the proposed method is shown in Figure. EEG 

signal and EOG signal is taken at 1x4000.It is then sampled at the length of 

1x1000. The EEG recordings are contaminated by EOG signal (Woestengurg 

et al 2007). The EOG signal is a non-cortical activity. The eye and brain 

activities have physiologically separate sources, so the recorded EEG is a 

superposition of the true EEG and some portion of the EOG signal. It can be 

represented as in Equation (4.3) 

 
)(.)()( tEOGktEEGtEEG

truerec
           (4.3) 

 EEGrec (t) - Recorded contaminated EEG,  

 EEGtrue (t) - EEG due to the cortical activity (i.e., Brain activity)  

 K.EOG (t) - Propagated ocular artifact from eye to the recording 

site.  

 EEGtrue (t) is to be estimated from EEGrec (t) by efficiently removing 

the K.EOG(t)at the same time retaining the EEG activity.  
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 The proposed Algorithm in this paper involves the following steps:  

i) Apply Discrete Wavelet Transform to the contaminated EEG 

with Haar wavelet as the basis function to detect the Ocular 

Artifact zone. 

ii) Apply Stationary Wavelet Transform with Coif 4 as the basis 

function to the contaminated EEG with OA zones identified 

for removing Ocular Artifacts.  

iii) For each identified OA zone, select optimal threshold limit at 

each level of decomposition based on minimum Risk value 

and apply that to the soft-like thresholding function which 

best removes noise.  

iv) Apply inverse stationary wavelet transform to the threshold 

wavelet coefficients to obtain the de-noised EEG signal. 

4.6.1 Adaptive Noise Cancellation Method 

 The adaptive interference cancellation is a very efficient method to 

solve the problem when signals and interference have overlapping spectra. 

Figure 4.2 shows the Adaptive Noise Cancellation Method. 

 

 

 

 

 

Figure 4.2 Adaptive Noise Cancellation 
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 To accomplish the objective of this paper a non-linear channel 

with DWT is used. The input n(t) is the EEG corrupted with 

artifacts (EEG+EOG). 

 The reference signal X(t) is on original EOG(without 

artifacts). The output of non-linear channel is r(t) which is an 

estimation of original EEG. 

 This signal r(t) is subtracted from the corrupted mrs(t) to 

produce the error ɤ(t), which is the EEG without artifacts. 

4.6.2 Flowchart 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Flowchart 
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STEP 1 

 In first step, combining original EEG signal recorded from 

human brain with one-third of ocular artifacts (i.e.) EOG 

signal taken during blink effect and eye ball movement. 

 Artifact signal is obtained by combining both EEG and EOG 

signal. 

STEP 2 

Artifact zone identification 

 There are several methods to identify the artifact zone. The 

artifact zone is identified using haar wavelet transform. 

 Since it is a type of wavelet transform, it removes the artifact 

in lesser time. It is applicable to the real time as compared to 

other existing transforms like PCA, ICA, and Regression.  

 The Haar wavelet is also the simplest possible wavelet. The 

technical disadvantage of the Haar wavelet is that it is not 

continuous, and therefore not differentiable. 

 This property can, however, be an advantage for the analysis 

of signals with sudden transitions, such as monitoring of tool 

failure in machines. 

STEP 3 

 This step involves finding the soft threshold value of noisy 

signal. This threshold value is calculated using mean and 

variance of the signal. For noisy signal the threshold value 

must always greater. 

http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Derivative


156 

 

 Adaptive thresholding applied only to the ocular Artifacts 

zone does not affect the low frequency components in the 

non-ocular Artifacts zones and also preserves the shape 

(waveform) of the EEG signal in non-artifact zones which is 

of very much importance in clinical diagnosis. 

STEP 4 

 After finding the threshold value, the noisy signals are 

eliminated using wavelet shrinkage. This step involves the 

removal of  the noise by wavelet shrinkage. This removes the 

noise using threshold coefficient value.  

 Wavelet coefficients having small absolute value are 

considered to encode mostly noise and very fine details of the 

signal. In contrast, the important information is encoded by 

the coefficients having large absolute value.  

 Removing the small absolute value coefficients and then 

reconstructing the signal should produce signal with lesser 

amount of noise. 

STEP 5 

Reconstruction 

 After applying wavelet shrinkage inverse discrete haar 

wavelet transform is taken.  

 This step rejoins the signal to get a continuous de-noisy signal 

other than eliminated noisy signal. 
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STEP 6 

 Finally SNR ratio for de-noisy signal was calculated by taking 

the correlation of the de-noisy signal and compared it with the 

original EEG signal. Figure 4.3 shows the flow chart of 

proposed methodology. 

4.7 DE-NOISING PROCEDURE PRINCIPLES 

 The general de-noising procedure involves three steps (Tatjana 

Zikov et al 2010). The basic version of the procedure follows the steps 

described below. 

 Decompose  

o Choose a wavelet; choose a level N.  

o Compute the wavelet decomposition of the signal s at 

level N. 

 Threshold Detail Coefficients 

 For each level from 1 to N, select a threshold and 

applysoft thresholding to the detail coefficients. 

 Reconstruct 

o Compute wavelet reconstruction using the original 

approximation coefficients of level N and the modified 

detail coefficients of levels from 1 to N. 

4.8 PREPROCESSING OF BRAIN SIGNALS 

 Before brain signals can be analyzed, they need to be appropriately 

processed, for example, to remove artifacts; this section is devoted to such 

pre-processing methods, first explaining why preprocessing is necessary, and 

then outlining the state of the-art in preprocessing of brain signals.  
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4.8.1 Need for preprocessing 

 EEG recordings typically contain not only electrical signals from 

the brain, but also several unwanted signals: 

 Interference from electronic equipment, as for example the 50 

or 60Hz power supply signals.           

 Electromyography (EMG) signals evoked by muscular 

activity 

 Ocular artifacts, due to eye movement or blinking. 

 Those unwanted components may bias the analysis of theEEG, and 

may lead to wrong conclusions. 

4.8.2 Preprocessing- Discussion  

 Brain signals often contain unwanted signals which may bias the 

analysis of the signals, and may lead to wrong conclusions. Reviewson 

several modern approaches were carried to reduce such artifacts; each of 

those approaches has its own pros and cons. On a more fundamental level, 

however, it is clear that in order to reliably extract artifacts, one needs to 

know how brain signals generally look like, and what information content 

they encode. Therefore, as the understanding of brain signals improves, it 

should become less difficult to detect and remove artifacts. 

4.9 OCULAR ZONE IDENTIFICATION 

4.9.1 Haar Transform for Analyzing EEG Signal 

 The Haar transform is the simplest of the wavelet transforms. This 

transform cross-multiplies a function against the Haar wavelet with various 

shifts and stretches, like the Fourier transform cross-multiplies a function 



159 

 

against a sine wave with two phases and many stretches. The Haar transform 

can be thought of as a sampling process in which rows of the Transform for 

noise removal. It provides the shortest path and the time consumption is less. 

In mathematics, the Haar wavelet is a certain sequence of rescaled "square-

shaped" functions which together form a wavelet family or basis (Venkata 

Ramanan et al 2009). Wavelet analysis is similar to Fourier analysis in and  

allows a target function over an interval to be represented in terms of an 

orthonormal function basis. The Haar sequence is now recognized as the first 

known wavelet basis and extensively used as a teaching example in the theory 

of wavelets. TheHaar sequence was proposed in 1909 by Alfred Haar. 

 Haar used these functions to give an example of a countable 

orthonormal system for the space of square-integrable function on the real 

line. The study of wavelets, and even the term "wavelet", did not come until 

much later. As a special case of the Daubechies wavelet, it is also known as 

D2. The Haar wavelet is also the simplest possible wavelet. The technical 

disadvantage of the Haar wavelet is that it is not continuous, and therefore not 

differentiable. This property can, however, be an advantage for the analysis of 

signals with sudden transitions, such as monitoring of tool failure in 

machines. 

 The Haar wavelet's mother wavelet function ψ(t) can be described 

as in Equation (4.4) and Equation (4.5). 
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http://en.wikipedia.org/wiki/Wavelet
http://en.wikipedia.org/wiki/Alfr%C3%A9d_Haar
http://en.wikipedia.org/wiki/Real_line
http://en.wikipedia.org/wiki/Real_line
http://en.wikipedia.org/wiki/Daubechies_wavelet
http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Derivative
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Its scaling function ¢(t) can be described as 

 

 


otherwise       0

1t1       1
)( t             (4.5) 

4.9.2 Automatic Identification of ocular Artifacts Zones Using Haar 

Wavelet 

 By analyzing the frequency spread of the EEG data that contained 

the Ocular Artifacts, researchers found that the difference in the frequency of 

the spikes caused due to rapid eye blink and the EEG signal could be used 

along with a simultaneous recording of the EOG to detect and remove these 

artifacts. But correlation of the EEG and EOG is futile, especially because of 

the inherent corruption of EEG data by the restraint on the user‟s eye 

movements and blinks (Senthilkumar et al2008). The accurate detection of 

these artifacts by singular observation of the time or frequency domains fails 

and hence the wavelet transform can be used to study the time-frequency 

maps of the EOG contaminated EEG. Haar wavelet is used to decompose the 

recorded EEG Signal to detect the exact moment when the state of the eye 

changes from open to close and vice versa.  

 Decomposition of the EEG data with the Haar wavelet results in a 

step function with a falling edge for a change in the state of the eyes from 

open to close and a step function with a rising edge for a change in state of 

the eyes from close to open. The same technique is used to detect the ocular 

artifacts zones in the contaminated EEG.  
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4.10 DECOMPOSITION USING DISCRETE WAVELET 

TRANSFORM  

 The transform of a signal is just another form of representing the 

signal. It does not change the information content present in the signal. The 

Wavelet Transform provides a time-frequency representation of the signal. It 

was developed to overcome the short coming of the Short Time Fourier 

Transform (STFT), which can also be used to analyze non-stationary signals. 

While STFT gives a constant resolution at all frequencies, the Wavelet 

Transform uses multi-resolution technique by which different frequencies are 

analyzed with different resolutions. A wave is an oscillating function of time 

or space and is periodic. In contrast, wavelets are localized waves that have 

their energy concentrated in time or space and are suited to analysis of 

transient signals.  

 While Fourier Transform and STFT use waves to analyze signals, 

the Wavelet Transform uses wavelets of finite energy. The wavelet analysis is 

done similar to the STFT analysis. The signal to be analyzed is multiplied 

with a wavelet function just as it is multiplied with a window function in 

STFT, and then the transform is computed for each segment generated. 

However, unlike STFT, in Wavelet Transform, the width of the wavelet 

function changes with each spectral component. The Wavelet Transform, at 

high frequencies, gives good time resolution and poor frequency resolution; 

while at low frequencies, the Wavelet Transform gives good frequency 

resolution and poor time resolution. 

4.11 SOFT THRESHOLDING 

 The wavelet coefficients calculated by a wavelet transform 

represent change in the time series at a particular resolution. By looking at the 

time series in various resolutions it should be possible to filter out noise. 



162 

 

However, the definition of noise is a difficult one. Figure 4.4 shows the 

threshold families. 

The algorithm is 

1. Calculate a wavelet transform and order the coefficients by 

increasing frequency. This will result in an array containing 

the time series average plus a set of coefficients of length 1, 2, 

4, 8... The noise threshold will be calculated on the highest 

frequency coefficient spectrum (this is the largest spectrum).  

2. Calculate the median absolute deviation on the largest 

coefficient spectrum (Iman Elyasi and SadeghZarmehi2009). 

The median is calculated from the absolute value of the 

coefficients. The Equation for the median absolute deviation 

is shown in Equation (4.7). 

 6745.0

|}c||,....c||,c{| median

)mad(
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                                                                                   (4.7)
 

 Here c0, c1, etc... are the coefficients.  

 The factor 0.6745 in the denominator rescales the numerator 

so that )mad(  is also a suitable estimator for the standard 

deviation for Gaussian white noise (Wavelet Methods for 

Time Series Analysis).  

3. For calculating the noise threshold, used a modified version of 

the Equation in Wavelet Methods for Time Series Analysis. 

This Equation is shown in Equation (4.8). 

 
)ln( N

mad
              (4.8) 

 In this Equation N is the size of the time series.  
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4. Apply a thresholding algorithm to the coefficients. There are 

two popular versions:  

1. Hard thresholding: Hard thresholding sets any coefficient 

less than or equal to the threshold to zero.  

 if (coef [i] <= thresh) 

 coef [i] = 0.0; 

2. Soft thresholding: Hard tresholding sets any coefficient 

less than or equal to the threshold to zero. The threshold 

is subtracted from any coefficient that is greater than the 

threshold. This moves the time series toward zero.  

 if (coef[i] <= thresh) 

 coef [i] = 0.0; 

 else 

 coef [j] = coef [i] - thresh; 

     a) Original signal     b) Hard threshold signal    c) Soft threshold signal 

Figure 4.4 Threshold Families 
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4.12 POWER SPECTRAL DENSITY 

 The above definitions of energy spectral density requires that the 

Fourier transforms of the signals exist, that is, that the signals are 

integrable/summable or square-integrable/square-summable. Often more 

useful alternative is the power spectral density(PSD), which describes how 

the power of a signal or time series is distributed with frequency. Here power 

can be the actual physical power, or more often, for convenience with abstract 

signals, can be defined as the squared value of the signal, that is, as the actual 

power dissipated in a purely resistive load if the signal were a voltage applied 

across it( Paulchamy and IlaVennila 2012). This instantaneous power (the 

mean or expected value of which is the average power) is then given by in 

Equation (4.9). 

 
2

)()( tstP               (4.9) 

for a signal s(t). 

4.12.1 Properties of Power Spectral Density 

 Spectrum of a real valued process is symmetric: S(-f)=S(f) 

 It is continuous and differentiable on [-1/2, +1/2] 

 Derivative is zero at f = 0 

 Auto-Covariance can be reconstructed by using the Inverse 

Fourier transform 

 It describes the distribution of variance across time scales 

given in Equation (4.10). 
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 It is a linear function of the auto-covariance function  

http://en.wikipedia.org/wiki/Integrable_function
http://en.wikipedia.org/wiki/Power_(physics)
http://en.wikipedia.org/wiki/Resistor
http://en.wikipedia.org/wiki/Inverse_Fourier_transform
http://en.wikipedia.org/wiki/Inverse_Fourier_transform
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 If ɤ is decomposed into two functions )()()(
2111
   

 Then s(f) is given in Equation (4.11). 
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 The power spectrum G(f) is defined as in Equation (4.12). 
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4.13 SIGNAL-TO-NOISE RATIO 

 Signal-to-noise ratio (often abbreviated SNR or S/N) is a measure 

used in science and engineering that compares the level of a desired signal to 

the level of background noise. It is defined as the ratio of signal power to the 

noise power. A ratio higher than 1:1 indicates more signal than noise. While 

SNR is commonly quoted for electrical signals, it can be applied to any form 

of signal. The signal-to-noise ratio, the bandwidth, and the channel capacity 

of a communication channel, is connected by the Shannon–Hartley theorem. 

 Signal-to-noise ratio is defined as the power ratio between a signal 

(meaningful information) and the background noise (unwanted signal).It is 

given in Equation (4.13). 

 noise

signal

P

P
SNR            (4.13) 

 psignal = Average power of the signal 

 pnoise = Average noise of the signal 

 Power of the output signal is calculated as shown in  

Equation (4.14). 

http://en.wikipedia.org/wiki/Noise
http://en.wikipedia.org/wiki/Shannon%E2%80%93Hartley_theorem
http://en.wikipedia.org/wiki/Power_(physics)
http://en.wikipedia.org/wiki/Signal_(information_theory)
http://en.wikipedia.org/wiki/Noise_(electronic)


166 

 

 )n(x
1M

1
P

21M

0nx 





                                                         (4.14) 

 M=Number of samples 

 x(n)=Input signal 

4.14 RESULT&DISCUSSION 

4.14.1 EEG Signal 

 The Figure 4.5 Shows original EEG signal taken from human brain. 

 

Figure 4.5 EEG signal 

4.14.2 Contaminated Signal 

 The Figure 4.6 shows contaminated signal (i.e.) combination of 

original signal and ocular artifacts taken from eye. It is ade-noisy signal. In 

this the task is to remove noisy signal (EOG) from the below signal. 
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Figure 4.6 Contaminated Signal 

4.14.3 Corrected EEG 

  Figure 4.7 shows de-noisy signal. The noisy signal is removed 

from Figure 4.6 using Haar wavelet transform and soft thresholding value. 

This corrected signal gives original signal as taken from human brain. 

 

Figure 4.7 Corrected EEG Signal 
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4.14.4 Power Spectral Density 

 Figure 4.8.Shows power spectral density of de-noised signal and it 

had been carried out for different trials. 

 

Figure4.8 Power Spectral Density 

4.14.5 Correlation Plot  

 Figure 4.9 shows the correlation plot for de-noised signal. This 

correlation plot gives the relation between noise and de-noised signal. 

 

Figure 4.9 Correlation Plot 
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4.15 SNR COMPARISON FOR NOISY AND DENOISY SIGNAL 

 EEG Data with ocular Artifacts are taken for testing the Proposed 

Method. The Data is sampled at a rate of 128 Samples/Second. The effect of 

Ocular Artifacts will be dominant in the frontal and front polar channels. 

Hence it is Sufficient to apply the algorithms to these channels. Table 

2.Summarises the Signal to Noise ratio Comparison of 5 trials of Noisy signal 

(EEG +EOG Artifact) and De-noisedSignal (Corrected EEG). Obviously the 

signal to Noise Ratio of de-noised signal is higher than the Noisy Signal. 

Table 4.1 shows the SNR Comparison between Noisy Signal and Demised 

Signal 

Table 4.1  SNR Comparison between corrupted signal and De-noised 

Signal 

Trails SNR for Corrupted Signal 
SNR for Denoised 

Signal 

Trial-1 10.1040 19.3050 

Trial-2 11.1020 20.1050 

Trial-3 12.3010 21.7030 

Trial-4 12.9210 23.4030 

Trial-5 13.1020 24.5040 
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Figure 4.10 SNR Curve for corrupted and denoised signal 

Figure 4.10 shows the signal to Noise ration curve for corrupted and 

denoised signal.The SNR of denoised signal is higher than the corrupted 

signal. 

4.16 SUMMARY 

 This chapter presents an effective approach for the diagnosis of 

brain signal using Haar wavelet transform. A method to identify the ocular 

artifact through Haar wavelet transform is proposed and soft-like thresholding 

is applied to the ocular artifact zones.An adaptive thresholding applied only to 

the ocular artifact zone does not affect the low frequency components but 

preserves the shape of the EEG signal in the non-artifact zones which is of 

great importance in the clinical diagnosis. Power Spectral Density and 

correlation values are used as performance metrics in this research. In all 

cases, artifacts are adequately attenuated, without removing significant and 

useful information. 
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 It is concluded that the proposed method gives less complexity and 

provide easier technique for the removal of artifacts with the help of the 

wavelet decomposition and is an efficient technique for improving the quality 

of EEG signals in biomedical analysis. The proposed method minimizes the 

amplitude of the ocular artifact, preserving the magnitude and phase of the 

high frequency back ground EEG activity compared to the proposed method.  

 Efforts should be directed towards designing Haar and other similar 

discontinuous wavelets for highly artifact selective detection and de-noising. 

The decomposition and reconstruction of the signal is performed effectively 

by using discrete wavelet transform and inverse discrete wavelet transform. 

But it gives only an estimate in providing an inference relating to therelative 

superiority of the algorithms used for removing ocular artifacts from EEG.  

Further, it is the considered opinion that a suitable performance metric for 

validating the de-noised EEG signals should be devised for quantitatively 

comparing the signal to noise ratio of the signal. The signal to noise ratio has 

taken for different trials in the entire length of the EEG signal. 
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CHAPTER 5 

MULTIWAVELET TRANSFORM 

 

 The wavelet transform is effectively implemented in signal 

denoising. The multiwavelet transform which is a newer alternative of 

wavelet, comprises some important differences compared to wavelets. 

Wavelets can be effectively utilized in multiresolution analysis with scaling 

function φ(t) and wavelet function ψ(t).The wavelets allow the usage of 

multiple scaling and wavelet functions. Multiwavelets which have been 

evolved behind this idea are considered as a natural extension of wavelets. 

The multi wavelets hold significant advantages over standard wavelets for 

solving more complicated problems and hence are of great interest. 

5.1 INTRODUCTION 

 In the earlier techniques, multiresolution analysis was done using 

functions. The analysis of functions can only express the functions belonging 

to a certain space as a linear combination of basis functions. Wavelets have 

preceded a step further in multiresolution analysis. In the analysis using 

wavelets, the wavelets consider every basis function be a dilation and 

translation of a single scaling function of unit norm, denoted φ(t) ( Coifman et 

al1992). In wavelet analysis, the integer translations should be linearly 

independent and produce an orthonormal basis for the subspace V0. For fixed 

integer scale j, the translations {2
−j/2

φ(2
−j

 t−k)}|k∈Zform an orthonormal basis 

for the subspace Vj, suchthat the subspaces satisfy the 

function ......
21012



VVVVV  
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 The Equation (5.1) shows that relation. 
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 This allows each function f(t) ∈L
2
(R)  to be written as a linear 

combination of these basis functions with weights αj,k, The f(t) can be 

defined as follows in Equation (5.2) and Equation (5.3). 
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 The scaling coefficients are represented by the weights αj,k. One of 

the important point to be taken into consideration is that the orthogonal 

expansion of f(t) in the Vj subspaces are not mutually disjoint. The functions 

{2
−j/2

φ(2
−j

 t−k)}|j, k∈Zare not linearly independent across scales, so they do 

not represent a basis for  L
2
(R).  

 The nesting property of the subspace satisfies the two scale dilation 

equation. It infers that the scaling function φ∈V0 also belongsto V−1. The 

two-scale dilation is represented by Equation (5.4). 

 







k

k
ktht )2(2)( 

            (5.4) 

where the sequence {hk} will become important in the next section. In this 

section will consider the set {hk} as the coefficients of the orthogonal 

projection of φ(t) onto the basis {√2 φ(2t−k)}|k∈Zof V−1, but later we will 

consider them as low pass filter coefficients in a filter bank. When the scale j 
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decreases, the support of each basis function 2
−j/2

φ(2
−j

t−k)lessens as well. 

This clearly shows that the smaller scales generate a much finer and detailed 

resolution. The multiresolution analysis can be used to produce graphical 

interpretation. 

 Though the larger values of j indicate basis functions with wider 

support, the coarser scales provide fewer details. This makes sense, since 

Vj⊂Vj-1 implies that Vj-1represents a space of functions at a finer resolution 

than Vj(Ingrid Daubechies1992.). Since orthogonal decomposition of f(t) is 

required,  the “difference” spaceWj is denoted  as the complement of Vj in  

Vj-1, as below in Equation (5.5) 

  
 jjjjj

WVWVV
,1             (5.5) 

 L
2
(R) is decomposed into mutually orthogonal subspaces by the 

subspace W as follows, in Equation (5.6). 

 
(R)LW    Wand ,j'j if WW

2

jj'j '
j 

         (5.6) 

 The basis for the subspace W0 consists of translations of a new 

function, ψ(t) form. The basis for Wj will be {2
−j/2

ψ(2
−j

 t−k)}|k∈Zsince W 

spaces inherit the scaling properties of the V spaces. Therefore similar to V 

spaces, each function f(t) ∈L
2
(R) is written as a linear combination of these 

basis functions with weights βj,k.It is shown in Equation (5.7). 
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 The wavelet function is represented the function ψ(t).The wavelet 

coefficients are denoted by the numbers βj,k .Equation (5.8)  indicates the 

orthogonal expansion of f(t). A basis for L
2
(R) is represented by the functions 

{2
−j/2

ψ(2
−j

t−k)}|j,k∈Z .  Since ψ∈W0 and W0⊂V−1, ψ(t) value is given in 

Equation (5.9). 
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with orthogonal projection coefficients {gk}. In Equation (5.10) each 

subspace VM is obtained as the result of direct sum of VN and some W 

subspaces, for N>M, 

 121
...




MNNNNM
WWWWVV

       (5.10) 

 There is still another way of representing the subspace VM as a 

linear combination of basic  functions of the mutually orthogonal subspaces 

VN, WN, WN-1,….,WM+1.For a 
given the function f(t)∈VM write as follows in 

Equation (5.11). 
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 The next section describes the filter bank representation of the 

wavelet transform. Here, the selection of subspaces will correspond to the 

tree-shaped octave-band iteration of the analysis bank. 

5.2 MULTIWAVELET 

 The name multiwavelets itself suggests that multiwavelets can be 

implemented using several wavelets having several scaling functions 

(Geronimo and Assopust 1994). Multiwavelets offer several advantages such 

as compact support, Orthogonality, symmetry, and high order approximation 
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compared to scalar wavelets (Strang and Strela1995). A scalar wavelet can 

never inherit all these properties simultaneously (Strang and Nguyen 1995). 

Further a multiwavelet system provides perfect reconstruction while 

preserving length, good performance at the boundaries, and a high order of 

approximation coincidentally. Thus, multiwavelets play a significant role in 

signal processing. 

 In image processing applications, the multiwavelets enhance the 

possibility of superior performance and high degree of freedom  compared to 

scalar wavelets. A multiwavelet is said to have multiplicity r when it contains 

r scaling functions and r wavelet functions is said to have multiplicity r. The 

multiwavelet system reduces to a scalar wavelet system when r=1. 

Multiwavelets can possess two or more scaling functions and wavelet 

functions. In order to provide notational difference for a multiwavelet system, 

the set of scaling functions can be written using the vector notation is given in 

Equation (5.12) 

 ɸ (t)=[ɸ1(t),ɸ2(t),…….,ɸr(t)]
T
         (5.12) 

where, ɸ(t) is  called the multi-scaling function. The Multiwavelet function is 

defined from the set of wavelet function is given in Equation (5.13). 

 T)]t(r.....),t(2),t(1[)t(          (5.13) 

 When r=1, ψ(t) corresponds to a scalar wavelet. The Multiwavelet 

system requires two or more input streams the Multiwavelet filter bank. The 

theory of Multiwavelets also has its basis in multiresolution analysis (MRA) 

when compared to scalar wavelets. However, the multiwavelets possess 

several scaling functions. For Multiwavelets, the notion of MRA is the same 

except that now a basis for V0 and V1 is generated by translates of N scaling 

functions given in Equation (5.14). 

 ɸ1(t-k),ɸ2(t-k)…….ɸN(t-k)         (5.14) 
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 The matrix dilation is satisfied by the multi scaling function and the 

Multiwavelet functions as in the following Equation (5.15) and  

Equation (5.16). 

 ɸ(t)= )kt2(H2
k k 



        (5.15) 

 ψ(t)= )kt2(G2
k k 


  
       (5.16) 

 The filter coefficients Hk and Gk are N by N matrices instead of 

scalar. Each of the multiwavelets comprises of a matrix-valued multi-rate 

filter bank. The Multiwavelet filter bank is composed of “taps” that are N × N 

matrices. A symmetric Multiwavelet filter bank with 4-coefficients possesses 

a low pass filter which is denoted by the four N × N matrices and is named C. 

The high pass filter which is named as D, cannot be obtained directly as an 

“alternating flip” of the low pass filter as in the case of scalar 2-band Para 

unitary filter bank. In multiwavelet filter bank, the wavelet filters D has to be 

designed. The result obtained is an N channel, N × N matrix filter bank that 

operates on N input data. These inputs are filtered into 2N output streams, 

each of which is down sampled by a factor of 2. This is shown in Figure 5.1. 

 

 

 

 

 

 

Figure 5.1 Decomposition of the Signal 
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 Each row of the multi filter is derived as a combination of N 

ordinary filters. Each of them operates on a separate data stream. 

 Major reasons behind utilizing multi wavelets are listed below: 

1. The   multi wavelets can be used to restrictions on the filter 

properties because they provide extra degrees of freedom. 

2. Symmetric signal extension necessitates the usage of 

symmetric filters. 

3. The multi wavelets have the capability to possess all these 

properties simultaneously. 

4. The property of orthogonality can be effectively used to 

design and implement the transforms in a simpler way.  

 The amount of energy compaction attained by a transform is 

another important feature to be considered in signal denoising. Only a filter 

with good energy compaction property can decorrelate a fairly uniform input 

signal into a small number of scaling coefficients, retaining most of the 

energy and a large number of sparse wavelet coefficients. The wavelet 

coefficients are represented with significantly fewer bits on average than the 

scaling coefficients. Therefore, energy compaction becomes much important 

during quantization(Xiang-Gen Xia et al 1995). In order to obtain better 

performance and reduce quantization noise, the wavelet coefficients must 

have values clustered about zero with little variance. The multiwavelets have 

the capability to provide better reconstruction quality at the same bit rate. 

5.3 PREPROCESSING FOR MULTIWAVELETS 

 One of the important issues to be handled in multiwavelets which 

are used in transform process is that Multiwavelet filter banks require a 

vector-valued input signal. Such an input signal can be easily produced from 
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a 2-D image using several ways. However, the most excellent method is to 

use the adjacent rows and columns of the image data (Vasily Strela 1996). 

But this method does not suit well for general multiwavelets because it 

generates reconstruction artifacts in the lowpass data after coefficient 

quantization. This problem can be handled by constructing “Constrained” 

multiwavelets, which possess certain key properties (Vasily Strela 1996). But 

the Constrained multiwavelets are somewhat restricted which degrade their 

performance  compared to some other multiwavelets. There is a better 

approach  that allows to split each row and column into two half-length 

signals and then feed these two half signals as the channel inputs into the 

multifilter(Strela et al1998). There is yet approach that allows taking the odd 

samples for one signal and the even samples for the second signal. But the 

main disadvantage of this approach is that it destroys the assumed 

characteristics of the input signal and does not work well. It is a well known 

fact that image data can belocally well-approximated by low-order 

polynomials, usually constant, linear, or quadratic. When the input takes this 

form, the high pass filters are designed in such a way that they produce 

uniformly zero output but when alternating data points are taken as filter 

inputs, the character of the input signal is altered by the filter inputs so the 

output cannot be forced to remain zero. This reduces the compression 

performance. However, this problem can be handled by pre-filering the half-

length signals before passing them into the multifilter.The properties of the 

input signal are adjusted this prefilter step. 

 That splits one scalar signal into two half-length signals in such a 

way that the orders of approximation built into the multifilter are utilized 

(Vasily Strela 1996,Strela and Walden1998 , Jo Yew Tham et al 1998). The 

two signals that are supposed to be prefilterd must be in the form of 2×N 

matrix (where the original 1-D signal had length 2N). These signals are then 
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multiplied by one or more 2×2 prefilter matrices. The major limitation in the 

earlier methods is that these methods were tied to a specific multifilter or 

required more than one prefilter matrix. Tham et al. (Jo Yew Tham et al 

1998) proposed a method which made use of a single orthogonal prefilter 

matrix for any given multifilter. Further, this method could provide some 

optimization of the prefilter properties to match any given multifilter. When 

classes of symmetric and antisymmetric multiwavelets were subjected to the 

above method, it produced a prefilter matrix with entries of equal magnitude 

(Xiang-Gen Xia et al 1995, Vasily Strela 1996,  Strela and Walden  1998). If 

the overall constant were absorbed into the multifilter itself, then the 

preprocessing operation would require no multiplications and only two 

additions for each input vector. The synthesis stage is provided with a 

matching post filter operation that neutralizes the effects of prefilter. 

5.4 MOTIVATION FOR MULTIWAVELETS 

 In image denoising, the algorithms based on scalar wavelets were 

found to work quite well. Therefore, the multiwavelets must yield better 

results compared to scalar wavelets. The major reasons which make 

multiwavelets more advantageous when compared to scalar wavelets are 

summarized below. First and foremost, the multiwavelets possess the inherent 

properties of extra degrees of freedom. This reduces the restrictions on the 

filter properties (Gilbert Strang and Truong Nguyen1996). Scalar wavelets 

possess some restrictions. It cannot have both orthogonality and a symmetric 

impulse response simultaneously. In order to design and implement the 

transforms easily,  orthogonality is essential. Symmetric filters are a 

indispensable for symmetric signal extension. Further, in scalar wavelets, the 

support length and the number of vanishing moments depend directly on the 

filter length. Therefore, in scalar wavelets, higher order of approximation can 
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be achieved only by the use of longer filter lengths. But longer filter lengths 

can be attained only at the cost of wavelet‟s increased interval of support (in 

the time domain). Better coding gain can be achieved only with higher order 

of approximation but shorter wavelet support is generally desired for better 

localized approximation of the input function. Compared to scalar wavelets, 

the multiwavelets possess all these properties simultaneously. For example 

consider the GHM multiwavelet (Geronimo et al 1994).  

 It contains all the above said properties like orthogonality, second 

order of approximation, symmetric scaling and wavelet functions (and thus 

symmetric filters), and short support for both of its scaling functions ([0,1] 

and [0,2], respectively). This combination cannot be attained with scalar 

wavelets. Consider the scalar filter, 4-tap Daubechies filter. It contains all the 

important properties like orthogonality, second order of approximation, and 

scaling function support on [0,3] but lacks the important property of 

symmetry. Similarly, the bi-orthogonal 9/7 wavelet has symmetric filters, 

fourth order of approximation (in both analysis and synthesis filters), and 

scaling function support on [0,9], but lacks orthogonality. 

 The previous literature reveals the fact that multiwavelets serves as 

a better tool in signal denoising but the signal de-noising results revealed by 

Strela and Walden (Strela and Walden1998) using the Bi9/7 scalar wavelet 

show that it gives better results when compared to the older multiwavelets on 

signals like EEG. However, newer multifilters have provided results which 

are much better and convincing when compared to some of the better 

previous scalar filters. A paper by Strela et al. (Strela et al 1998)presents 

results in which at least one multiwavelet dramatically outperformed scalar 

wavelets on a synthetic test signal. 
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 Finally, considering the computational complexity, the scalar 

wavelets have a clear advantage over multi wavelets. Each of the branches in 

a multiwavelet filter bank has two channels and 2-input, 2-output filters. But 

the symmetric bi-orthogonal scalar wavelets are efficient because each of the 

scalar filters in a symmetric-antisymmetric multifilter has the same kind of 

symmetry. In a multifilter system, each filter processes less data compared to 

the scalar filter at the same level. The Multi wavelets require twice as much 

computational complexity when compared to scalar wavelet, provided all the 

other factors are equal. But the multi wavelets have the capability to provide 

performance comparable to scalar wavelets with shorter filters. For example, 

the length-4 multifilters SA4 and ORT4 require4 multiplications and 7 

additions per sample. Xia et al (Tao Xia and Qingtang Jiang1998) shows that 

the Bi9/7 scalar wavelet (with M1=7 and M2=9) requires 4.5 multiplications 

and 7 additions per input sample. This clearly indicates that their 

performances are comparable. With regards to the by     Wei et al (Dong Wei 

et al 1998), the Bi22/14 scalar filter requires 9 multiplications and 17 

additions per input sample. But the longest multifilter BSA9/7 requires only 8 

multiplications and 14 additions per input sample. Also, the EEG signal 

artifacts removal results clearly indicate that the multiwavelets have the 

capability to achieve the same level of performance as scalar wavelets with 

similar computational complexity. 

5.5 MULTIWAVELET PACKETS 

 Similar to scalar wavelets, this procedure involves repeating the 

filtering operation on the lowpass channel of the filter bank. By repeating the 

filtering operation on the highpass channels, new basis functions can be 

formed. This approach is named as multiwavelet packets because it combines 

the wavelet packet decomposition with multiwavelet filters. Though this idea 
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is much simple, it provides lesser computational complexity. Table 5.1 

provides a comparison of computational complexities of symmetric wavelets 

and antisymmetric multiwavelets for one level of analysis. M1 and M2 are the 

low pass and high pass filter lengths and L is the length in samples of the 

scalar-valued input signal. 

Table 5.1  Comparison of computational complexities of wavelets and 

Multiwavelet 

FILTER TYPE MULTIPLICATIONS ADDITIONS 

Scalar Wavelet, odd 

length 

 

Scalar Wavelet, even 

length 

L(M1 +M2 + 2) 

4 

 

L(M1 +M2) 

4 

L(M1 +M2 − 2) 

2 

 

L(M1 +M2 − 2) 

2 

Multiwavelet, odd 

length 

 

Multiwavelet, even 

length 

L(M1 +M2) 

2 

 

L(M1 +M2) 

2 

L(M1 +M2 − 2) 

 

 

L(M1 +M2 − 1) 

 

 Let U0(t)≡Φ(t) and U1(t)≡Ψ(t), given in Equation (5.17) and 

Equation (5.18). 
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 The multiwavelet packets are much similar to scalar wavelet 

packets. Even the basis selection algorithm and cost functions used to build 

the tree structure are much similar in both the cases with only one exception. 

In multiwavelet packets, each branching in the tree structure creates four new 

channels (assuming r=2) instead of two channels in scalar wavelet packets. 

This is due to the dual-channel nature of multiwavelet filter banks. Thus, in 

multiwavelet packets, each of the parents has four children which increase the 

computational complexity.  

 The methods based on cost functions operate on all the pixels 

corresponding to each node. Therefore, they remain unaffected. In case of 

multiwavelet packets, there are four nodes instead of two but each node 

represents half as much data so the net effect is zero. Some of the methods 

make use of  the rate-distortion optimization techniques. However, the 

increased number of nodes increase the computational complexity of these 

methods. 

 The motivation to use multiwavelet packets still holds as it does for 

scalar wavelets so as to better capture high frequency content and oscillations 

in the original image data, while retaining the benefits of multiwavelet filters. 

Since no published literature has yet tested multiwavelet packets, we do so 

here. 

5.6 MULTIWAVELET DENOISING TECHNIQUE 

 EEG is nothing but a signal super imposed on a noisy signal. Let 

S(t) represent the true signal and ᶓ(t) represent the external noise. The 

measured signal is written in the form as Equation (5.19). 

 X(t)=S(t)+ ᶓ(t)           (5.19) 
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 Assume that that S(t) and  ε (t) are uncorrelated and are stationary  

processes. When a signal is decomposed using wavelet transform, a set of 

wavelet coefficients that correlates to the high frequency sub-bands are 

obtained. The details in the data set are present within these high frequency 

sub-bands. The details might be neglected affecting the main features of the 

data set if they are negligible. Thresholding provides promising results in 

signal and image de-noising.  The proper selection of threshold limit, 

thresholding function and window sizes is considered to be much important in 

denoising procedure because the original signal coefficients which contain the 

critical information in the analyzed data should not be removed. In this 

chapter, the following thresholding (statistical empirical) formula is used for 

calculating the thresholding limits.  This formula produces better de-noised 

results than (Krishnaveni et al 2004), which is applied to the entire length of 

the signal.    

 Threshold based on Statistics of the signal 

 Threshold Value is given in Equation (5.20).     

           (5.20)  

 Window Length=10 Seconds 

where N is a Positive Integer, ranging from 100 to 150    

 x - Mean of all samples  

 σ - Standard deviation of all samples    

 

Tk= N 
x-σ 

x+σ 
x 
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5.7 ASSESSMENT CRITERIA 

 Signal to Noise Ratio 

 Signal-to-noise ratio is defined as the power ratio between a signal 

(meaningful information) and the background noise (unwanted signal). It is 

given in Equation (5.21). 

 noise

signal

P

P
SNR            (5.21) 

where P is average power. 

 Correlation 

 Correlation is nothing g but similarity between two signal. Cross 

correlation is known as similarity between two different signals.  

 The CC which is used to these similarities is measured as follows, 

in Equation (5.22). 
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        (5.22) 

where xi and yi are the samples of the original signal and its reproduced 

version, x and y represents their averages respectively.

 
 

http://en.wikipedia.org/wiki/Signal_(information_theory)
http://en.wikipedia.org/wiki/Noise_(electronic)
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5.8 RESULTS &DISCUSSION  

 EEG data with artifacts are taken from the website 

http://www.sccn.ucsd.edu/~arno/famzdata/publicly_avialble_EEG_data.html(

Schlogal et al2007)for testing the proposed methods. The effect of artifacts is 

dominant in the Frontal and fronto –polar channels like Fp1, Fp2, F7, 

F8.Hence it is sufficient to apply the method to these channels. In the case of 

multiwavelet transform the denoising of EEG signals is carried out by using 

threshold limit, threshold function and window Size. Choice of threshold limit 

and thresholding function is a crucial step in the de nosing procedure, as it 

should not remove the original signal coefficients leading to loss of critical 

information in the analyzed data(Amari and Cichocki 1996), (Bell and 

Sejnowski 1995). The Figure 5.2 shows the original EEG. 
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Figure 5.2 Original EEG 

 The figure 5.3 to 5.12 describes the empirical results for five trials 

of EG contaminated with EOG artifacts and power spectral density plot for 

original and denoised EEG using Multiwavelets. 
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 Trial 1 

 

Figure  5.3 EEG with EOG signal 

 

 

Figure 5.4 Power spectra plot 
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 Trial 2 

 

Figure  5.5 EEG with EOG signal 

 

Figure 5.6 Power spectra plot 
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 Trial 3 

 

Figure  5.7 EEG with EOG signal 

 

Figure  5.8 Power spectra plot 
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 Trial 4 

 

Figure 5.9 EEG with EOG signal 

 

Figure 5.10 Power spectra plot 
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 Trial 5 

 

Figure 5.11 EEG with EOG signal 

 

Figure 5.12  Power Spectra Plot 
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 Signal to Noise ratio and cross correlation is the important 

technical evaluation parameter in signal. Table 5.2  compares SNR and Cross 

correlation values of various Multiwavelet filters. 

Table 5.2 Summaryof five trials Artifacts removal results (CC in percent) 

Trials 
Multiwavelet 

filters 
CC 

SNR(dB) 

Corrupted 

Signal 

Denoised 

Signal 

1 SA4 99.13 20.03 28.9 

CL 99.20 19.2 28.7 

GHM 98.98 19.0 27.9 

2 SA4 99.11 20.20 27.6 

CL 99.26 20.05 28.4 

GHM 98.99 22.1 28.1 

3 SA4 99.23 20.5 28.5 

CL 98.42 21.2 28.8 

GHM 98.78 20.3 27.8 

4 SA4 98.13 20.4 27.9 

CL 99.20 19.2 27.9 

GHM 98.98 19.0 28.6 

5 SA4 99.16 20.5 28.2 

CL 98.20 19.2 28.4 

GHM 98.69 18.8 27.6 
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Figure 5.13 SNR and CC curve for five trial using multiwavelet 

 Figure 5.13 shows the SNR and cross correlation of five using 

multiwavelet transform.From the figure,the cross correlation achieve for 

denoised signal is nearabout 98%.The SNR value oif denoised signal is higher 

tha the corrupted signal.  

Table 5.3SNR values for proposed methods 

 

Trials 

Corrupted 

Signal 

SNR ( dB) 

SNR in dB for proposed Methods 

Using 

ICA 

(IJADE) 

Neuro 

fuzzy 

Filter 

Haar 

wavelet 

Transform 

Multi 

wavelet 

Transform 

(SA4 Filter) 

Trial 1 10.1040 17.4210 18.5040 19.3040 28.1010 

Trial 2 11.1020 18.1010 19.1020 20.1050 28.9040 

Trial 3 12.3010 18.7020 19.7030 21.7030 29.5040 

Trial 4 12.9210 19.3030 19.9040 23.4030 30.4020 

Trial 5 13.1020 19.8040 20.2060 24.5040 32.5010 
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 The Table 5.3 shows the SNR value in dB for the proposed 

methods. The IJADE SNR value is higher than corrupted  signal. Neuro-fuzzy 

filter SNR is higher than IJADE .Haar wavelet SNR is higher than Neuro 

fuzzy filter. Finally  Multiwavelet achieve high SNR value compare with 

Other methods. 

 

Figure 5.14 SNR curve for corrupted signal and proposed artifacts 

removal methods 

 

Figure 5.15 Correlation plot for noisy signal and proposed artifacts 

removal methods 
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 Figure 5.15 shows the correlation plot for corrupted signal and 

various artifacts removal method. This correlation plots gives the relation 

between noisy and de-noised signal. 
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Figure 5.16 Power spectral density  plot for proposed methods 

 Figure 5.16 shows the power spectral density plot for proposed 

methods namely IJADE, neuro fuzzy filter, Haar wavelet and multiwavelet 

transform amongs this methods multiwavelet transform only achive high 

power spectral density. 

5.9 SUMMARY 

 In this chapter multiwavelets filters are used to remove the artifacts 

from electroenchaphalogram (EEG) signals. They are defined using several 

wavelets with several scaling functions. Multiwavelet has several advantages 

in comparison with scalar wavelet. The features such as compact support, 

orthogonally, symmetry and higher order approximation are known to be 
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important in signal processing. Multiwavelets provide one alternative to the 

wavelet transform. Multiwavelets are very similar to wavelets but have some 

important differences. In particular,  where as wavelets but have an 

associated  scaling function and wavelet function, multiwavelets have two or 

more scaling and wavelet function. The technique has been checked on five 

trails of artifacts Signals. Using multiwavelet filters SA4, GHM, CL to 

remove EOG, artifacts by a new threshold formula is discussed. The proposed  

Multiwavelet method gives a better result without any complexity and also 

retains the original information contained in the EEG signal. Power Spectral 

Density plot, correlation values table & SNR values table are used as 

performance matrices. Multiwavelet method has outperformed ICA, Neuro 

fuzzy filter and WT as far as SNR and cross correlation concerned.This 

chapter conclude that the Statistical method gives lesser complexity and 

easier to remove the Artifacts with help of Multiwavelet Decomposition. It is 

an efficient technique for improving the Quality of EEG Signals in 

Biomedical Analysis. 



198 

 

 

CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

6.1 CONCLUSION 

 This chapter summarizes the outcome of the research work 

developed for artifacts removal in EEG. The details of various methods are 

analysed and present their comparative evaluation of interms of various 

technical parameters like signal to noise ratio, correlation factor and power 

spectral density. A combination of approaches using all methods for de-

noising evaluation is identified. Also; several directions for research in this 

area are discussed. Artifacts removal is the process of identifying and 

removing artifacts from brain signals. An artifacts removal method should be 

able to remove the artifacts as well as keep related neurological phenomenon 

intact. The main objective of the artifacts removal is to remove the artifacts 

from original signal without loss of information. In this research four novel 

artifacts removal methods and its output performances are discussed. The 

major contributions of this research work are: 

 Improvement in power spectral density of de-noised signal 

 High signal to noise ratio value 

 Reduction in the time in removal process 

 Correlation achievement 

 Improvement of information content 
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 The concluding remarks of the each artifacts removal methods are 

stated as follows. 

 Chapter 2 presented independent component analysis technique is 

discussed. Observed from the literature that JADE performs better than the 

other ICA Algorithms. In this chapter Improved JADE Algorithm is 

presented. The implementation of the Infomax algorithms, Fast ICA will have 

adjustable parameters, whereas IJADE had no parameters. Separation quality 

of Infomax, Extended Infomax and Fast ICA highly depends on tuning of its 

parameters. Time required for JADE is to separate the source signals is very 

less when compared with other algorithms, so that JADE is faster is execution 

for the 7 channel data. IJADE uses cumulant matrices which are equal to 

square of number of channels, if number of channels are increasing then the 

cumulants matrices also increases, the diagonalization process of cumulant 

matrices becomes complex and time required for separation also increases 

and memory requirement also increases. Infomax algorithm cannot separate 

the sub-gaussian sources such as line noise; whereas Extended Infomax can 

do better for all types of sources. The five trial datas are considered for 

artifacts removal.  The Improved JADE obtained results have higher signal to 

noise ratio value and less execution time compared to the existing technique 

such as fast ICA, infomax and extended infomax.  

 Chapter 3 discusses Neuro-fuzzy filter, which are an integration of 

neural networks and fuzzy logic. The computational process envisioned for 

neuro-fuzzy systems is  starts with the development of a “fuzzy neuron” based 

on the understanding of biological neuronal morphologies, followed by learning 

mechanisms. This leads the functions of a fuzzy neural computational 

process.Development of fuzzy neural models motivated by biological 

neurons.Models of synaptic connections which incorporates fuzziness into 

neural network.Development of learning algorithms( the method of adjusting 
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the synaptic  weights). In this work Neuro fuzzy filter gives the better Results 

in terms of signal to Noise ration and correlation factor compare with ICA. 

 Chapter 4 describes the Haar transform which serves as a prototype 

for all other wavelet transforms is the simplest of all the transforms. A 

discrete signal is decomposed into two sub signals of half its length using 

Haar transform. One of the sub signals denotes the running average of trend 

while the other denotes the running difference or fluctuation. The selection of 

threshold and thresholding function plays a vital role in signal denoising .In 

order to discard the noise coefficients efficiently, a proper thresholding 

function is essential.  The thresholding function can be implemented to retain 

the wavelet coefficients. The retained the wavelet coefficients represent the 

denoised signal while the discarded coefficients represent the noise signals. 

Inverse wavelet transform is implemented to obtain the denoised EEG signal. 

In this work, Ocular artifact zones are identified by the use of applied wavelet 

based adaptive thresholding algorithm, which prevents the removal of 

background EEG information.Haar wavelet transform gives the better result 

in terms of signal to Noise ratio compare with Neuro fuzzy filter.  

 Chapter 5 presents maultiwavevelet transform, it has several 

advantages in comparison with scalar wavelet. The features such as compact 

support, orthogonally, symmetry, and higher order approximation are known 

to be important in signal processing.  In this method thresholding technique is 

used for signal de-noising. Decomposing a signal using the wavelet 

transform, a set of wavelet coefficients that correlates to the high frequency 

sub bands. These high frequency sub bands consist of the details in the data 

set.  If these details are small enough, they might be omitted without 

substantially affecting the main features of the data set. The de-noising of 

EEG signal is carried out by using different combinations of threshold limit, 

thresholding function and window sizes.  Choice of threshold limit and 
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thresholding function is a crucial step in the de-noising procedure, as it should 

not remove the original signal coefficients leading to loss of critical 

information in the analysed data. Because of using this transform the artifacts 

in the EEG signal could be removed without loss of information. Compare to 

previous methods, Multiwavelet transform has outperformed improved 

JADE, Neuro fuzzy filter and wavelet transform as far as SNR and correlation 

factor concerned.  

 From the experimental results, the following conclusions can be 

drawn: 

 It can be seen from the experiments that it can successfully 

separate noise from EEG signals. 

 Multiwavelet method has outperformed ICA, Neuro fuzzy 

filter and Wavelet Transform as far as SNR concerned. 

 Multiwavelet method has outperformed ICA, Neuro fuzzy 

filter and Wavelet Transform as far as   correlation factor 

concerned. 

 It can be seen from the experiments the powers of the spectral 

components have been fully   retained. 

 Based on these results it can be concluded that Multiwavelet 

transform has an overall performance which is better than all 

three methods like IJADE, Haar transform and Neuro fuzzy 

filter, i.e. Multiwavelet is the most consistent and robust 

artifacts removal method. 
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6.2 FUTURE ENHANCEMENTS 

 Some of the suggestions towards extension and/or future related 

works are identified. 

 Adaptive filter algorithm can be used to minimize the impact 

of noise in EEG signal 

 Single objective and multiple objective genetic algorithms can 

be used to optimize the neuro-fuzzy filter coefficients. 

 Multidirectional transforms like curvelet and contourlet 

transform can be investigated to denoise the EEG signal. 
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